
§1 SAT0W INTRO 1

September 4, 2019 at 16:05

1. Intro. This program is part of a series of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.
Indeed, this is the first of the series — more precisely the zero-th. I’ve tried to write it as a primitive

baseline against which I’ll be able to measure various technical improvements that have been discovered in
recent years. This version represents what I think I would have written in the 1960s, when I knew how
to do basic backtracking with classical data structures (but very little else). I have intentionally written it
before having read any of the literature about modern SAT-solving techniques; in other words I’m starting
with a personal “tabula rasa.” My plan is to write new versions as I read the literature, in more-or-less
historical order. The only thing that currently distinguishes me from a programmer of forty years ago,
SAT-solving-wise, is the knowledge that better methods almost surely do exist.
[Note: Actually this is a special version, written at the end of October 2012. It strips down the old

data structures and uses watched literals instead. I think it represents a nearly minimal decent SAT solver.
Algorithm 7.2.2.2B is based on this code.]
Although this is the zero-level program, I’m taking care to adopt conventions for input and output that

will be essentially the same in all of the fancier versions that are to come.
The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals

separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented by the
following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~␣ are ignored (treated as comments). The output will be ‘~’ if the input clauses
are unsatisfiable. Otherwise it will be a list of noncontradictory literals that cover each clause, separated by
spaces. (“Noncontradictory” means that we don’t have both a literal and its negation.) The input above
would, for example, yield ‘~’; but if the final clause were omitted, the output would be ‘~x1 ~x2 x3’, in some
order, possibly together with either x4 or ~x4 (but not both). No attempt is made to find all solutions; at
most one solution is given.
The running time in “mems” is also reported, together with the approximate number of bytes needed for

data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)

2 INTRO SAT0W §2

2. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/
⟨Type definitions 5 ⟩;
⟨Global variables 3 ⟩;
⟨Subroutines 27 ⟩;
main (int argc , char ∗argv [])
{
register uint c, h, i, j, k, l, p, q, r, level , parity ;

⟨Process the command line 4 ⟩;
⟨ Initialize everything 8 ⟩;
⟨ Input the clauses 9 ⟩;
if (verbose & show basics) ⟨Report the successful completion of the input phase 21 ⟩;
⟨Set up the main data structures 30 ⟩;
imems = mems ,mems = 0;
⟨Solve the problem 36 ⟩;

done : if (verbose & show basics) fprintf (stderr ,
"Altogether␣%llu+%llu␣mems,␣%llu␣bytes,␣%llu␣nodes.\n", imems ,mems , bytes ,nodes);

}

3. #define show basics 1 /∗ verbose code for basic stats ∗/
#define show choices 2 /∗ verbose code for backtrack logging ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
⟨Global variables 3 ⟩ ≡
int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics ; /∗ level of verbosity ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta ̸= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/

See also sections 7 and 26.

This code is used in section 2.

§4 SAT0W INTRO 3

4. On the command line one can say

• ‘v⟨ integer ⟩’ to enable various levels of verbose output on stderr ;
• ‘c⟨positive integer ⟩’ to limit the levels on which clauses are shown;
• ‘h⟨positive integer ⟩’ to adjust the hash table size;
• ‘b⟨positive integer ⟩’ to adjust the size of the input buffer;
• ‘s⟨ integer ⟩’ to define the seed for any random numbers that are used; and/or
• ‘d⟨ integer ⟩’ to set delta for periodic state reports.
• ‘T⟨ integer ⟩’ to set timeout : This program will abruptly terminate, when it discovers thatmems > timeout .

⟨Process the command line 4 ⟩ ≡
for (j = argc − 1, k = 0; j; j−−)
switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, "%d",&verbose)− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, "%d",&show choices max)− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, "%d",&hbits)− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, "%d",&buf size)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, "%d",&random seed)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, "%lld",&delta)− 1); thresh = delta ; break;
case ’T’: k |= (sscanf (argv [j] + 1, "%lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k ∨ hbits < 0 ∨ hbits > 30 ∨ buf size ≤ 0) {
fprintf (stderr , "Usage:␣%s␣[v<n>]␣[c<n>]␣[h<n>]␣[b<n>]␣[s<n>]␣[d<n>]␣[T<n>]␣<␣foo.sat\n",

argv [0]);
exit (−1);

}
This code is used in section 2.

4 THE I/O WRAPPER SAT0W §5

5. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines in all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.
In these temporary tables, each variable is represented by four things: its unique name; its serial number;

the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/
⟨Type definitions 5 ⟩ ≡

typedef union {
char ch8 [8];
uint u2 [2];
long long lng ;

} octa;
typedef struct tmp var struct {
octa name ; /∗ the name (one to eight ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/

} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk];

} vchunk;

See also sections 6, 23, 24, and 25.

This code is used in section 2.

6. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/
⟨Type definitions 5 ⟩ +≡

typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk];

} chunk;

§7 SAT0W THE I/O WRAPPER 5

7. ⟨Global variables 3 ⟩ +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/

8. ⟨ Initialize everything 8 ⟩ ≡
gb init rand (random seed);
buf = (char ∗) malloc(buf size ∗ sizeof (char));
if (¬buf) {
fprintf (stderr , "Couldn’t␣allocate␣the␣input␣buffer␣(buf_size=%d)!\n", buf size);
exit (−2);

}
hash = (tmp var ∗∗) malloc(sizeof (tmp var) ≪ hbits);
if (¬hash) {
fprintf (stderr , "Couldn’t␣allocate␣%d␣hash␣list␣heads␣(hbits=%d)!\n", 1 ≪ hbits , hbits);
exit (−3);

}
for (h = 0; h < 1 ≪ hbits ; h++) hash [h] = Λ;

See also section 14.

This code is used in section 2.

6 THE I/O WRAPPER SAT0W §9

9. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)
All the hashing takes place at the very beginning, and the hash tables are actually recycled before any

SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

⟨ Input the clauses 9 ⟩ ≡
while (1) {
if (¬fgets (buf , buf size , stdin)) break;
clauses++;
if (buf [strlen (buf)− 1] ̸= ’\n’) {
fprintf (stderr , "The␣clause␣on␣line␣%lld␣(%.20s...)␣is␣too␣long␣for␣me;\n", clauses , buf);
fprintf (stderr , "␣my␣buf_size␣is␣only␣%d!\n", buf size);
fprintf (stderr , "Please␣use␣the␣command−line␣option␣b<newsize>.\n");
exit (−4);

}
⟨ Input the clause in buf 10 ⟩;

}
if ((vars ≫ hbits) ≥ 10) {
fprintf (stderr , "There␣are␣%lld␣variables␣but␣only␣%d␣hash␣tables;\n", vars , 1 ≪ hbits);
while ((vars ≫ hbits) ≥ 10) hbits++;
fprintf (stderr , "␣maybe␣you␣should␣use␣command−line␣option␣h%d?\n", hbits);

}
clauses −= nullclauses ;
if (clauses ≡ 0) {
fprintf (stderr , "No␣clauses␣were␣input!\n");
exit (−77);

}
if (vars ≥ #80000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣%llu␣variables!\n", vars);
exit (−664);

}
if (clauses ≥ #80000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣%llu␣clauses!\n", clauses);
exit (−665);

}
if (cells ≥ #100000000) {
fprintf (stderr , "Whoa,␣the␣input␣had␣%llu␣occurrences␣of␣literals!\n", cells);
exit (−666);

}
This code is used in section 2.

§10 SAT0W THE I/O WRAPPER 7

10. ⟨ Input the clause in buf 10 ⟩ ≡
for (j = k = 0; ;) {
while (buf [j] ≡ ’␣’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’␣’ ∨ buf [j] > ’~’) {

fprintf (stderr , "Illegal␣character␣(code␣#%x)␣in␣the␣clause␣on␣line␣%lld!\n", buf [j],
clauses);

exit (−5);
}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
⟨Scan and record a variable; negate it if i ≡ 1 11 ⟩;

}
if (k ≡ 0) {
fprintf (stderr , "(Empty␣line␣%lld␣is␣being␣ignored)\n", clauses);
nullclauses++; /∗ strictly speaking it would be unsatisfiable ∗/

}
goto clause done ;

empty clause : ⟨Remove all variables of the current clause 18 ⟩;
clause done : cells += k;

This code is used in section 9.

11. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)
⟨Scan and record a variable; negate it if i ≡ 1 11 ⟩ ≡

{
register tmp var ∗p;
if (cur tmp var ≡ bad tmp var) ⟨ Install a new vchunk 12 ⟩;
⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 15 ⟩;
⟨Find cur tmp var⃗name in the hash table at p 16 ⟩;
if (p⃗ stamp ≡ clauses ∨ p⃗ stamp ≡ −clauses) ⟨Handle a duplicate literal 17 ⟩
else {
p⃗ stamp = (i ? −clauses : clauses);
if (cur cell ≡ bad cell) ⟨ Install a new chunk 13 ⟩;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

This code is used in section 10.

8 THE I/O WRAPPER SAT0W §12

12. ⟨ Install a new vchunk 12 ⟩ ≡
{
register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc(sizeof (vchunk));
if (¬new vchunk) {

fprintf (stderr , "Can’t␣allocate␣a␣new␣vchunk!\n");
exit (−6);

}
new vchunk⃗prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk⃗var [0];
bad tmp var = &new vchunk⃗var [vars per vchunk];

}
This code is used in section 11.

13. ⟨ Install a new chunk 13 ⟩ ≡
{
register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc(sizeof (chunk));
if (¬new chunk) {
fprintf (stderr , "Can’t␣allocate␣a␣new␣chunk!\n");
exit (−7);

}
new chunk⃗prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk⃗cell [0];
bad cell = &new chunk⃗cell [cells per chunk];

}
This code is used in section 11.

14. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

⟨ Initialize everything 8 ⟩ +≡
for (j = 92; j; j−−)
for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ();

15. ⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 15 ⟩ ≡
cur tmp var⃗name .lng = 0;
for (h = l = 0; buf [j + l] > ’␣’ ∧ buf [j + l] ≤ ’~’; l++) {
if (l > 7) {
fprintf (stderr , "Variable␣name␣%.9s...␣in␣the␣clause␣on␣line␣%lld␣is␣too␣long!\n",

buf + j, clauses);
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var⃗name .ch8 [l] = buf [j + l];

}
if (l ≡ 0) goto empty clause ; /∗ ‘~’ by itself is like ‘true’ ∗/
j += l;
h &= (1 ≪ hbits)− 1;

This code is used in section 11.

§16 SAT0W THE I/O WRAPPER 9

16. ⟨Find cur tmp var⃗name in the hash table at p 16 ⟩ ≡
for (p = hash [h]; p; p = p⃗ next)
if (p⃗ name .lng ≡ cur tmp var⃗name .lng) break;

if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p⃗ next = hash [h], hash [h] = p;
p⃗ serial = vars++;
p⃗ stamp = 0;

}
This code is used in section 11.

17. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

⟨Handle a duplicate literal 17 ⟩ ≡
{
if ((p⃗ stamp > 0) ≡ (i > 0)) goto empty clause ;

}
This code is used in section 11.

18. An input line that begins with ‘~␣’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

⟨Remove all variables of the current clause 18 ⟩ ≡
while (k) {
⟨Move cur cell backward to the previous cell 19 ⟩;
k−−;

}
if ((buf [0] ̸= ’~’) ∨ (buf [1] ̸= ’␣’))
fprintf (stderr , "(The␣clause␣on␣line␣%lld␣is␣always␣satisfied)\n", clauses);

nullclauses++;

This code is used in section 10.

19. ⟨Move cur cell backward to the previous cell 19 ⟩ ≡
if (cur cell > &cur chunk⃗cell [0]) cur cell −−;
else {
register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk⃗prev ; free (old chunk);
bad cell = &cur chunk⃗cell [cells per chunk];
cur cell = bad cell − 1;

}
This code is used in sections 18 and 33.

20. ⟨Move cur tmp var backward to the previous temporary variable 20 ⟩ ≡
if (cur tmp var > &cur vchunk⃗var [0]) cur tmp var −−;
else {
register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk⃗prev ; free (old vchunk);
bad tmp var = &cur vchunk⃗var [vars per vchunk];
cur tmp var = bad tmp var − 1;

}
This code is used in section 34.

10 THE I/O WRAPPER SAT0W §21

21. ⟨Report the successful completion of the input phase 21 ⟩ ≡
fprintf (stderr , "(%lld␣variables,␣%lld␣clauses,␣%llu␣literals␣successfully␣read)\n", vars ,

clauses , cells);

This code is used in section 2.

§22 SAT0W SAT SOLVING, VERSION 0 11

22. SAT solving, version 0. OK, now comes my hypothetical low-overhead SAT solver, with the lazy
data structures of Brown and Purdom 1982 grafted back into 1960s ideas.
The algorithm below essentially tries to solve a satisfiability problem on n variables by first setting x1 to

its most plausible value, then using the same idea recursively on the remaining (n− 1)-variable problem. If
this doesn’t work, we try the other possibility for x1, and the result will either succeed or fail.
Data structures to support that method should allow us to do the following things easily:

• Know, for each literal, the clauses in which that literal is being “watched.”
• Know, for each clause, the literals that it contains, and the literal it watches.
• Swap literals within a clause so that the watched literal is never false.

The original clause sizes are known in advance. Therefore we can use a combination of sequential and linked
memory to accomplish all of these goals.

23. The basic unit in our data structure is called a cell. There’s one cell for each literal in each clause.
This stripped-down version of SAT0 doesn’t really need a special data type for cells, but I’ve kept it anyway.

Each link is a 32-bit integer. (I don’t use C pointers in the main data structures, because they occupy 64
bits and clutter up the caches.) The integer is an index into a monolithic array of cells called mem .

⟨Type definitions 5 ⟩ +≡
typedef struct {
uint litno ; /∗ literal number ∗/

} cell;

24. Each clause is represented by a pointer to its first cell, which contains its watched literal. There’s also
a pointer to another clause that has the same watched literal.
Clauses appear in reverse order. Thus the cells of clause c run from cmem [c].start to cmem [c−1].start −1.
The first 2n+ 2 “clauses” are special; they serve as list heads for watch lists of each literal.

⟨Type definitions 5 ⟩ +≡
typedef struct {
uint start ; /∗ the address in mem where the cells for this clause start ∗/
uint wlink ; /∗ link for the watch list ∗/

} clause;

25. A variable is represented by its name, for purposes of output. The name appears in a separate array
vmem of vertex nodes.

⟨Type definitions 5 ⟩ +≡
typedef struct {
octa name ; /∗ the variable’s symbolic name ∗/

} variable;

26. ⟨Global variables 3 ⟩ +≡
cell ∗mem ; /∗ the master array of cells ∗/
clause ∗cmem ; /∗ the master array of clauses ∗/
uint nonspec ; /∗ address in cmem of the first non-special clause ∗/
variable ∗vmem ; /∗ the master array of variables ∗/
char ∗move ; /∗ the stack of choices made so far ∗/

12 SAT SOLVING, VERSION 0 SAT0W §27

27. Here is a subroutine that prints a clause symbolically. It illustrates some of the conventions of the
data structures that have been explained above. I use it only for debugging.
Incidentally, the clause numbers reported to the user after the input phase may differ from the line numbers

reported during the input phase, when nullclauses > 0.

⟨Subroutines 27 ⟩ ≡
void print clause (uint c)
{
register uint k, l;

printf ("%d:", c); /∗ show the clause number ∗/
for (k = cmem [c].start ; k < cmem [c− 1].start ; k++) {
l = mem [k].litno ;
printf ("␣%s%.8s", l & 1 ? "~" : "", vmem [l ≫ 1].name .ch8); /∗ kth literal ∗/

}
printf ("\n");

}
See also sections 28 and 29.

This code is used in section 2.

28. Similarly we can print out all of the clauses that watch a particular literal.

⟨Subroutines 27 ⟩ +≡
void print clauses watching (int l)
{
register uint p;

for (p = cmem [l].wlink ; p; p = cmem [p].wlink) print clause (p);
}

29. In long runs it’s helpful to know how far we’ve gotten.

⟨Subroutines 27 ⟩ +≡
void print state (int l)
{
register int k;

fprintf (stderr , "␣after␣%lld␣mems:",mems);
for (k = 1; k ≤ l; k++) fprintf (stderr , "%c",move [k] + ’0’);
fprintf (stderr , "\n");
fflush (stderr);

}

§30 SAT0W INITIALIZING THE REAL DATA STRUCTURES 13

30. Initializing the real data structures. Okay, we’re ready now to convert the temporary chunks
of data into the form we want, and to recycle those chunks. The code below is intended to be a prototype
for similar tasks in later programs of this series.

⟨Set up the main data structures 30 ⟩ ≡
⟨Allocate the main arrays 31 ⟩;
⟨Copy all the temporary cells to the mem and cmem arrays in proper format 32 ⟩;
⟨Copy all the temporary variable nodes to the vmem array in proper format 34 ⟩;
⟨Check consistency 35 ⟩;

This code is used in section 2.

31. The backtracking routine uses a small array called move to record its choices-so-far. We don’t count
the space for move in bytes , because each variable entry has a spare byte that could have been used.

⟨Allocate the main arrays 31 ⟩ ≡
free (buf); free (hash); /∗ a tiny gesture to make a little room ∗/
mem = (cell ∗) malloc(cells ∗ sizeof (cell));
if (¬mem) {
fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣big␣mem␣array!\n");
exit (−10);

}
bytes = cells ∗ sizeof (cell);
nonspec = vars + vars + 2;
if (nonspec + clauses ≥ #100000000) {
fprintf (stderr , "Whoa,␣nonspec+clauses␣is␣too␣big␣for␣me!\n");
exit (−667);

}
cmem = (clause ∗) malloc((nonspec + clauses) ∗ sizeof (clause));
if (¬cmem) {

fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣cmem␣array!\n");
exit (−11);

}
bytes += (nonspec + clauses) ∗ sizeof (clause);
vmem = (variable ∗) malloc((vars + 1) ∗ sizeof (variable));
if (¬vmem) {

fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣vmem␣array!\n");
exit (−12);

}
bytes += (vars + 1) ∗ sizeof (variable);
move = (char ∗) malloc((vars + 1) ∗ sizeof (char));
if (¬move) {

fprintf (stderr , "Oops,␣I␣can’t␣allocate␣the␣move␣array!\n");
exit (−13);

}
This code is used in section 30.

14 INITIALIZING THE REAL DATA STRUCTURES SAT0W §32

32. ⟨Copy all the temporary cells to the mem and cmem arrays in proper format 32 ⟩ ≡
for (j = 0; j < nonspec ; j++) o, cmem [j].start = cmem [j].wlink = 0;
for (c = nonspec + clauses − 1, k = 0; c ≥ nonspec ; c−−) {
j = 0;
⟨ Insert the cells for the literals of clause c 33 ⟩;

}
o, cmem [c].start = k;

This code is used in section 30.

33. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

⟨ Insert the cells for the literals of clause c 33 ⟩ ≡
for (i = 0; i < 2; j++) {
⟨Move cur cell backward to the previous cell 19 ⟩;
i = hack out (∗cur cell);
p = hack clean (∗cur cell)⃗ serial ;
p += p+ (i& 1) + 2;
if (j ≡ 0) ooo , cmem [c].start = k, cmem [c].wlink = cmem [p].wlink , cmem [p].wlink = c, j = 1;
o,mem [k++].litno = p;

}
This code is used in section 32.

34. ⟨Copy all the temporary variable nodes to the vmem array in proper format 34 ⟩ ≡
for (c = vars ; c; c−−) {
⟨Move cur tmp var backward to the previous temporary variable 20 ⟩;
o, vmem [c].name .lng = cur tmp var⃗name .lng ;

}
This code is used in section 30.

35. We should now have unwound all the temporary data chunks back to their beginnings.

⟨Check consistency 35 ⟩ ≡
if (cur cell ̸= &cur chunk⃗cell[0] ∨ cur chunk⃗prev ̸= Λ ∨ cur tmp var ̸=

&cur vchunk⃗var [0] ∨ cur vchunk⃗prev ̸= Λ) {
fprintf (stderr , "This␣can’t␣happen␣(consistency␣check␣failure)!\n");
exit (−14);

}
free (cur chunk); free (cur vchunk);

This code is used in section 30.

§36 SAT0W DOING IT 15

36. Doing it. Now comes ye olde basic backtrack.
A choice is recorded in the move array, as the number 0 if we’re trying first to set the current variable

true; it is 3 if that move failed and we’re trying the other alternative.

⟨Solve the problem 36 ⟩ ≡
level = 1; /∗ I used to start at level 0, but Algorithm 7.2.2.2B does this ∗/

newlevel :
if (level > vars) goto satisfied ;
oo ,move [level] = (cmem [level + level + 1].wlink ̸= 0 ∨ cmem [level + level].wlink ≡ 0);
if ((verbose & show choices) ∧ level ≤ show choices max) {
fprintf (stderr , "Level␣%d,␣trying␣%s%.8s", level ,move [level] ? "~" : "", vmem [level].name .ch8);
if (verbose & show details) fprintf (stderr , "␣(%lld␣mems)",mems);
fprintf (stderr , "\n");

}
nodes++;
if (delta ∧ (mems ≥ thresh)) thresh += delta , print state (level);
if (mems > timeout) {
fprintf (stderr , "TIMEOUT!\n");
goto done ;

}
tryit : parity = move [level] & 1;
⟨Make variable level non-watched by the clauses in the non-chosen list; goto try again if that would

make a clause empty 37 ⟩;
level ++; goto newlevel ;

try again : if (o,move [level] < 2) {
o,move [level] = 3−move [level];
if ((verbose & show choices) ∧ level ≤ show choices max) {
fprintf (stderr , "Level␣%d,␣trying␣again", level);
if (verbose & show details) fprintf (stderr , "␣(%lld␣mems)\n",mems);
else fprintf (stderr , "\n");

}
goto tryit ;

}
if (level > 1) ⟨Backtrack to the previous level 38 ⟩;
if (1) {
printf ("~\n"); /∗ the formula was unsatisfiable ∗/
if (verbose & show basics) fprintf (stderr , "UNSAT\n");

} else {
satisfied : if (verbose & show basics) fprintf (stderr , "!SAT!\n");
⟨Print the solution found 39 ⟩;

}
This code is used in section 2.

16 DOING IT SAT0W §37

37. ⟨Make variable level non-watched by the clauses in the non-chosen list; goto try again if that would
make a clause empty 37 ⟩ ≡

for (o, c = cmem [level + level + 1− parity].wlink ; c; c = q) {
oo , i = cmem [c].start , q = cmem [c].wlink , j = cmem [c− 1].start ;
for (p = i+ 1; p < j; p++) {
o, k = mem [p].litno ;
if (k ≥ level + level ∨ (o, ((move [k ≫ 1]⊕ k) & 1) ≡ 0)) break;

}
if (p ≡ j) {
if (verbose & show details) fprintf (stderr , "(Clause␣%d␣contradicted)\n", c);
o, cmem [level + level + 1− parity].wlink = c;
goto try again ;

}
oo ,mem [i].litno = k,mem [p].litno = level + level + 1− parity ;
ooo , cmem [c].wlink = cmem [k].wlink , cmem [k].wlink = c;
if (verbose & show details)

fprintf (stderr , "(Clause␣%d␣now␣watches␣%s%.8s)\n", c, k&1 ? "~" : "", vmem [k ≫ 1].name .ch8);
}
o, cmem [level + level + 1− parity].wlink = 0;

This code is used in section 36.

38. ⟨Backtrack to the previous level 38 ⟩ ≡
{
level −−;
goto try again ;

}
This code is used in section 36.

39. ⟨Print the solution found 39 ⟩ ≡
for (k = 1; k < level ; k++) printf ("␣%s%.8s",move [k] & 1 ? "~" : "", vmem [k].name .ch8);
printf ("\n");

This code is used in section 36.

§40 SAT0W INDEX 17

40. Index.

argc : 2, 4.
argv : 2, 4.
bad cell : 7, 11, 13, 19.
bad tmp var : 7, 11, 12, 20.
buf : 7, 8, 9, 10, 15, 18, 31.
buf size : 3, 4, 8, 9.
bytes : 2, 3, 31.
c: 2, 27.
cell: 6, 13, 19, 23, 26, 31, 35.
cells : 7, 9, 10, 21, 31.
cells per chunk : 6, 13, 19.
chunk: 6, 7, 13, 19.
chunk struct: 6.
ch8 : 5, 15, 27, 36, 37, 39.
clause: 24, 26, 31.
clause done : 10.
clauses : 7, 9, 10, 11, 15, 18, 21, 31, 32.
cmem : 24, 26, 27, 28, 31, 32, 33, 36, 37.
cur cell : 7, 11, 13, 19, 33, 35.
cur chunk : 7, 13, 19, 35.
cur tmp var : 7, 11, 12, 15, 16, 20, 34, 35.
cur vchunk : 7, 12, 20, 35.
delta : 3, 4, 36.
done : 2, 36.
empty clause : 10, 15, 17.
exit : 4, 8, 9, 10, 12, 13, 15, 31, 35.
fflush : 29.
fgets : 9.
fprintf : 2, 4, 8, 9, 10, 12, 13, 15, 18, 21, 29,

31, 35, 36, 37.
free : 19, 20, 31, 35.
gb init rand : 8.
gb next rand : 14.
gb rand : 3.
h: 2.
hack clean : 33.
hack in : 11.
hack out : 33.
hash : 7, 8, 16, 31.
hash bits : 7, 14, 15.
hbits : 3, 4, 8, 9, 15.
i: 2.
imems : 2, 3.
j: 2.
k: 2, 27, 29.
l: 2, 27, 28, 29.
level : 2, 36, 37, 38, 39.
litno : 23, 27, 33, 37.
lng : 5, 15, 16, 34.
main : 2.
malloc : 8, 12, 13, 31.

mem : 23, 24, 26, 27, 31, 33, 37.
mems : 2, 3, 4, 29, 36.
move : 26, 29, 31, 36, 37, 39.
name : 5, 15, 16, 25, 27, 34, 36, 37, 39.
new chunk : 13.
new vchunk : 12.
newlevel : 36.
next : 5, 16.
nodes : 2, 3, 36.
nonspec : 26, 31, 32.
nullclauses : 7, 9, 10, 18, 27.
o: 2.
octa: 5, 25.
old chunk : 19.
old vchunk : 20.
oo : 2, 36, 37.
ooo : 2, 33, 37.
p: 2, 11, 28.
parity : 2, 36, 37.
prev : 5, 6, 12, 13, 19, 20, 35.
print clause : 27, 28.
print clauses watching : 28.
print state : 29, 36.
printf : 27, 36, 39.
q: 2.
r: 2.
random seed : 3, 4, 8.
satisfied : 36.
serial : 5, 16, 33.
show basics : 2, 3, 36.
show choices : 3, 36.
show choices max : 3, 4, 36.
show details : 3, 36, 37.
sscanf : 4.
stamp : 5, 11, 16, 17.
start : 24, 27, 32, 33, 37.
stderr : 2, 4, 8, 9, 10, 12, 13, 15, 18, 21, 29,

31, 35, 36, 37.
stdin : 1, 7, 9.
strlen : 9.
thresh : 3, 4, 36.
timeout : 3, 4, 36.
tmp var: 5, 6, 7, 8, 11, 33.
tmp var struct: 5.
try again : 36, 37, 38.
tryit : 36.
uint: 2, 5, 7, 23, 24, 26, 27, 28.
ullng: 2, 3, 7, 11, 33.
u2 : 5.
var : 5, 12, 20, 35.
variable: 25, 26, 31.

18 INDEX SAT0W §40

vars : 7, 9, 16, 21, 31, 34, 36.
vars per vchunk : 5, 12, 20.
vchunk: 5, 7, 12, 20.
vchunk struct: 5.
verbose : 2, 3, 4, 36, 37.
vmem : 25, 26, 27, 31, 34, 36, 37, 39.
wlink : 24, 28, 32, 33, 36, 37.

SAT0W NAMES OF THE SECTIONS 19

⟨Allocate the main arrays 31 ⟩ Used in section 30.

⟨Backtrack to the previous level 38 ⟩ Used in section 36.

⟨Check consistency 35 ⟩ Used in section 30.

⟨Copy all the temporary cells to the mem and cmem arrays in proper format 32 ⟩ Used in section 30.

⟨Copy all the temporary variable nodes to the vmem array in proper format 34 ⟩ Used in section 30.

⟨Find cur tmp var⃗name in the hash table at p 16 ⟩ Used in section 11.

⟨Global variables 3, 7, 26 ⟩ Used in section 2.

⟨Handle a duplicate literal 17 ⟩ Used in section 11.

⟨ Initialize everything 8, 14 ⟩ Used in section 2.

⟨ Input the clause in buf 10 ⟩ Used in section 9.

⟨ Input the clauses 9 ⟩ Used in section 2.

⟨ Insert the cells for the literals of clause c 33 ⟩ Used in section 32.

⟨ Install a new chunk 13 ⟩ Used in section 11.

⟨ Install a new vchunk 12 ⟩ Used in section 11.

⟨Make variable level non-watched by the clauses in the non-chosen list; goto try again if that would make
a clause empty 37 ⟩ Used in section 36.

⟨Move cur cell backward to the previous cell 19 ⟩ Used in sections 18 and 33.

⟨Move cur tmp var backward to the previous temporary variable 20 ⟩ Used in section 34.

⟨Print the solution found 39 ⟩ Used in section 36.

⟨Process the command line 4 ⟩ Used in section 2.

⟨Put the variable name beginning at buf [j] in cur tmp var⃗name and compute its hash code h 15 ⟩ Used

in section 11.

⟨Remove all variables of the current clause 18 ⟩ Used in section 10.

⟨Report the successful completion of the input phase 21 ⟩ Used in section 2.

⟨Scan and record a variable; negate it if i ≡ 1 11 ⟩ Used in section 10.

⟨Set up the main data structures 30 ⟩ Used in section 2.

⟨Solve the problem 36 ⟩ Used in section 2.

⟨Subroutines 27, 28, 29 ⟩ Used in section 2.

⟨Type definitions 5, 6, 23, 24, 25 ⟩ Used in section 2.

SAT0W

Section Page
Intro . 1 1
The I/O wrapper . 5 4
SAT solving, version 0 . 22 11
Initializing the real data structures . 30 13
Doing it . 36 15
Index . 40 17

