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1. Intro. This program is part of a series of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.
This time I’m implementing the algorithm that physicists have christened “Survey Propagation.” It’s

a development of a message-passing idea called “Belief Propagation,” which in turn extends “Warning
Propagation.” [See Braunstein, Mézard, and Zecchina, Random Structures &Algorithms 27 (2005), 201–
226.] And I’m also implementing an extended, improved algorithm that incorporates “reinforcement” [see
Chavas, Furtlehner, Mézard, and Zecchina, Journal of Statistical Mechanics (November 2005), P11016,
25 pages]. While writing this code I was greatly helped by studying an implementation prepared by Carlo
Baldassi in March 2012.

2. If you have already read SAT8, or any other program of this series, you might as well skip now past the
rest of this introduction, and past the code for the “I/O wrapper” that is presented in the next dozen or so
sections, because you’ve seen it before. (Except that there are several new command-line options, and the
output is a reduced set of clauses rather than a solution.)
The input appears on stdin as a series of lines, with one clause per line. Each clause is a sequence of

literals separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and },
inclusive, not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example,
Rivest’s famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented
by the following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~ are ignored (treated as comments). The output will be ‘~~?’ if the algorithm
could not find a way to satisfy the input clauses. Otherwise it will be a partial solution: a list of noncontra-
dictory literals that cover some but maybe not all of the clauses, separated by spaces. (“Noncontradictory”
means that we don’t have both a literal and its negation.) The residual problem, which must be satisfied if
the partial assignment turns out to be valid, is written to an auxiliary file. (The partial assignment might
be faulty; the algorithm has pretty good heuristics, but there are no guarantees.)
The input above would, for example, probably yield ‘~~?’. But if the final clause were omitted, the output

might be ‘~x1 ~x2’, leaving a residual problem with the two clauses ‘x3 ~x4’ and ‘x3 x4’. Or it might be
‘~x3’, leaving the (unsatisfiable) residual problem ‘x2 ~x4’, ‘x1 x4’, ‘~x1 x2, x4’, ‘~x1 ~x2’, ‘x1 ~x2 ~x4’.
The running time in “mems” is also reported, together with the approximate number of bytes needed for

data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)
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3. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/

〈Type definitions 6 〉;
〈Global variables 4 〉;
〈Subroutines 26 〉;

main (int argc , char ∗argv [ ])
{
register uint c, g, h, i, j, k, l, p, q, r, ii , kk , ll , fcount ;

〈Process the command line 5 〉;
〈 Initialize everything 9 〉;
〈 Input the clauses 10 〉;
if (verbose & show basics ) 〈Report the successful completion of the input phase 22 〉;
〈Set up the main data structures 28 〉;
imems = mems ,mems = 0;
〈Solve the problem 35 〉;
if (verbose & show basics )
fprintf (stderr , "Altogether %llu+%llu mems, %llu bytes.\n", imems ,mems , bytes );

}

4. #define show basics 1 /∗ verbose code for basic stats ∗/
#define show choices 2 /∗ verbose code for backtrack logging ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
#define show gory details 8 /∗ verbose code turned on when debugging ∗/
#define show histogram 16 /∗ verbose code to make a π × π histogram ∗/
#define show pis 32 /∗ verbose code to print out all the π’s ∗/

〈Global variables 4 〉 ≡
int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics ; /∗ level of verbosity ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
int max iter = 1000; /∗ maximum iterations ∗/
int min iter = 5; /∗ minimum iterations before reinforcement kicks in ∗/
int confidence = 50; /∗ lower limit for confidence of setting a variable ∗/
double damper = 0.99; /∗ the damping factor for reinforcement ∗/
double threshold = 0.01; /∗ upper limit for convergence check ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng bytes ; /∗ memory used by main data structures ∗/

See also sections 8, 25, 36, and 54.

This code is used in section 3.
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5. On the command line one can specify any or all of the following options:

• ‘v〈 integer 〉’ to enable various levels of verbose output on stderr .
• ‘h〈positive integer 〉’ to adjust the hash table size.
• ‘b〈positive integer 〉’ to adjust the size of the input buffer.
• ‘s〈 integer 〉’ to define the seed for any random numbers that are used.
• ‘d〈 integer 〉’ to set delta for periodic state reports.
• ‘t〈 integer 〉’ to define the maximum number of iterations.
• ‘l〈 integer 〉’ to define the minimum number of iterations before reinforcement begins.
• ‘c〈 integer 〉’ to define the confidence percentage, above which we decide that a variable is sufficiently
biased to be assigned a value.

• ‘p〈float 〉’ to define the damping factor damper for reinforcement.
• ‘e〈float 〉’ to define the threshold by which we decide that the messages have converged.

The defaults are listed with ‘Global variables’ above.

〈Process the command line 5 〉 ≡
for (j = argc − 1, k = 0; j; j−−)
switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, "%d",&verbose )− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, "%d",&hbits )− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, "%d",&buf size )− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, "%d",&random seed )− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, "%lld",&delta )− 1); thresh = delta ; break;
case ’t’: k |= (sscanf (argv [j] + 1, "%d",&max iter )− 1); break;
case ’l’: k |= (sscanf (argv [j] + 1, "%d",&min iter )− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, "%d",&confidence )− 1); break;
case ’p’: k |= (sscanf (argv [j] + 1, "%lf",&damper )− 1); break;
case ’e’: k |= (sscanf (argv [j] + 1, "%lf",&threshold )− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k ∨ hbits < 0 ∨ hbits > 30 ∨ buf size ≤ 0) {
fprintf (stderr ,

"Usage: %s [v<n>] [h<n>] [b<n>] [s<n>] [d<n>] [t<n>] [l<n>] [c<n>] [p<f>] [e<f>]\n",
argv [0]);

exit (−1);
}
if (damper < 0.0 ∨ damper > 1.0) {
fprintf (stderr , "Parameter p should be between 0.0 and 1.0!\n");
exit (−666);

}
if (confidence < 0 ∨ confidence > 100) {
fprintf (stderr , "Parameter c should be between 0 and 100!\n");
exit (−667);

}

This code is used in section 3.
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6. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines in all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.
In these temporary tables, each variable is represented by four things: its unique name; its serial number;

the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/

〈Type definitions 6 〉 ≡
typedef union {
char ch8 [8];
uint u2 [2];
long long lng ;

} octa;
typedef struct tmp var struct {
octa name ; /∗ the name (one to seven ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/

} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk ];

} vchunk;

See also sections 7 and 24.

This code is used in section 3.

7. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/

〈Type definitions 6 〉 +≡
typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk ];

} chunk;
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8. 〈Global variables 4 〉 +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/

9. 〈 Initialize everything 9 〉 ≡
gb init rand (random seed );
buf = (char ∗) malloc (buf size ∗ sizeof (char));
if (¬buf ) {
fprintf (stderr , "Couldn’t allocate the input buffer (buf_size=%d)!\n", buf size );
exit (−2);

}
hash = (tmp var ∗∗) malloc (sizeof (tmp var) ≪ hbits );
if (¬hash ) {
fprintf (stderr , "Couldn’t allocate %d hash list heads (hbits=%d)!\n", 1 ≪ hbits , hbits );
exit (−3);

}
for (h = 0; h < 1 ≪ hbits ; h++) hash [h] = Λ;

See also section 15.

This code is used in section 3.
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10. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)
All the hashing takes place at the very beginning, and the hash tables are actually recycled before any

SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

〈 Input the clauses 10 〉 ≡
while (1) {
if (¬fgets (buf , buf size , stdin )) break;
clauses ++;
if (buf [strlen (buf )− 1] 6= ’\n’) {
fprintf (stderr , "The clause on line %d (%.20s...) is too long for me;\n", clauses , buf );
fprintf (stderr , " my buf_size is only %d!\n", buf size );
fprintf (stderr , "Please use the command−line option b<newsize>.\n");
exit (−4);

}
〈 Input the clause in buf 11 〉;

}
if ((vars ≫ hbits ) ≥ 10) {
fprintf (stderr , "There are %d variables but only %d hash tables;\n", vars , 1 ≪ hbits );
while ((vars ≫ hbits ) ≥ 10) hbits ++;
fprintf (stderr , " maybe you should use command−line option h%d?\n", hbits );

}
clauses −= nullclauses ;
if (clauses ≡ 0) {
fprintf (stderr , "No clauses were input!\n");
exit (−77);

}
if (vars ≥ #80000000) {
fprintf (stderr , "Whoa, the input had %llu variables!\n", vars );
exit (−664);

}
if (clauses ≥ #80000000) {
fprintf (stderr , "Whoa, the input had %llu clauses!\n", clauses );
exit (−665);

}
if (cells ≥ #100000000) {
fprintf (stderr , "Whoa, the input had %llu occurrences of literals!\n", cells );
exit (−666);

}

This code is used in section 3.
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11. 〈 Input the clause in buf 11 〉 ≡
for (j = k = 0; ; ) {
while (buf [j] ≡ ’ ’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’ ’ ∨ buf [j] > ’~’) {
fprintf (stderr , "Illegal character (code #%x) in the clause on line %d!\n", buf [j], clauses );
exit (−5);

}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
〈Scan and record a variable; negate it if i ≡ 1 12 〉;

}
if (k ≡ 0) {
fprintf (stderr , "(Empty line %d is being ignored)\n", clauses );
nullclauses ++; /∗ strictly speaking it would be unsatisfiable ∗/

}
goto clause done ;

empty clause : 〈Remove all variables of the current clause 19 〉;
clause done : cells += k;

This code is used in section 10.

12. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)

〈Scan and record a variable; negate it if i ≡ 1 12 〉 ≡
{
register tmp var ∗p;

if (cur tmp var ≡ bad tmp var ) 〈 Install a new vchunk 13 〉;
〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 16 〉;
〈Find cur tmp var~name in the hash table at p 17 〉;
if (p~stamp ≡ clauses ∨ p~stamp ≡ −clauses ) 〈Handle a duplicate literal 18 〉
else {
p~stamp = (i ? −clauses : clauses );
if (cur cell ≡ bad cell ) 〈 Install a new chunk 14 〉;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

This code is used in section 11.
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13. 〈 Install a new vchunk 13 〉 ≡
{
register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc (sizeof (vchunk));
if (¬new vchunk ) {
fprintf (stderr , "Can’t allocate a new vchunk!\n");
exit (−6);

}
new vchunk~prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk~var [0];
bad tmp var = &new vchunk~var [vars per vchunk ];

}

This code is used in section 12.

14. 〈 Install a new chunk 14 〉 ≡
{
register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc (sizeof (chunk));
if (¬new chunk ) {
fprintf (stderr , "Can’t allocate a new chunk!\n");
exit (−7);

}
new chunk~prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk~cell [0];
bad cell = &new chunk~cell [cells per chunk ];

}

This code is used in section 12.

15. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

〈 Initialize everything 9 〉 +≡
for (j = 92; j; j−−)
for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ( );

16. 〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 16 〉 ≡
cur tmp var~name .lng = 0;
for (h = l = 0; buf [j + l] > ’ ’ ∧ buf [j + l] ≤ ’~’; l++) {
if (l > 7) {
fprintf (stderr , "Variable name %.9s... in the clause on line %d is too long!\n", buf + j,

clauses );
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var~name .ch8 [l] = buf [j + l];

}
if (l ≡ 0) goto empty clause ; /∗ ‘~’ by itself is like ‘true’ ∗/
j += l;
h &= (1 ≪ hbits )− 1;

This code is used in section 12.
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17. 〈Find cur tmp var~name in the hash table at p 17 〉 ≡
for (p = hash [h]; p; p = p~next )
if (p~name .lng ≡ cur tmp var~name .lng ) break;

if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p~next = hash [h], hash [h] = p;
p~serial = vars ++;
p~stamp = 0;

}

This code is used in section 12.

18. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

〈Handle a duplicate literal 18 〉 ≡
{
if ((p~stamp > 0) ≡ (i > 0)) goto empty clause ;

}

This code is used in section 12.

19. An input line that begins with ‘~ ’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

〈Remove all variables of the current clause 19 〉 ≡
while (k) {
〈Move cur cell backward to the previous cell 20 〉;
k−−;

}
if ((buf [0] 6= ’~’) ∨ (buf [1] 6= ’ ’))
fprintf (stderr , "(The clause on line %d is always satisfied)\n", clauses );

nullclauses ++;

This code is used in section 11.

20. 〈Move cur cell backward to the previous cell 20 〉 ≡
if (cur cell > &cur chunk~cell [0]) cur cell −−;
else {
register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk~prev ; free (old chunk );
bad cell = &cur chunk~cell [cells per chunk ];
cur cell = bad cell − 1;

}

This code is used in sections 19 and 32.

21. 〈Move cur tmp var backward to the previous temporary variable 21 〉 ≡
if (cur tmp var > &cur vchunk~var [0]) cur tmp var −−;
else {
register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk~prev ; free (old vchunk );
bad tmp var = &cur vchunk~var [vars per vchunk ];
cur tmp var = bad tmp var − 1;

}

This code is used in section 33.
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22. 〈Report the successful completion of the input phase 22 〉 ≡
fprintf (stderr , "(%d variables, %d clauses, %llu literals successfully read)\n", vars , clauses ,

cells );

This code is used in section 3.
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23. SAT solving, version 9. Survey Propagation is slightly similar to WalkSAT, but it’s really a new
kettle of fish. Clauses pass messages to each of their literals, representing locally known information about
the other literals in the clause. Literals pass messages to each of the clauses that they or their complement
are in, representing locally known information about the other clauses to which they belong. When we find
a variable with a strong tendency to be true or false, we fix its value and reduce to a smaller system. Local
information continues to propagate until we get some sort of convergence.
The clause-to-literal messages are called η’s. If c is a clause and l is a literal, ηc→l is a fraction between 0

and 1 that is large if c urgently needs l to be true, otherwise it’s small.
The literal-to-clause messages are called π’s. They too are fractions between 0 and 1, but they’re sort of

dual because they represent flexibility: The value of πl→c is small when clauses other than c badly want l
to be true.
An “external force field” that gently nudges literal l towards a particular value, with urgency ηl, is also

present. This force-of-reinforcement tends to improve decision-making, because it encourages the algorithm
to decide between competing tendencies.
Internally we maintain a single value πl for each literal, namely 1− ηl times the product of 1− ηc→l over

all clauses c that contain l. The message πl→c is then simply πl when l /∈ c; and it’s πl/(1 − ηc→l) when
l ∈ c. We use a special data structure to count the factors of this product that happen to be zero (within
floating-point precision), so that division by zero isn’t a problem.

24. The data structures are analogous to those of previous programs in this series. There are three main
arrays, cmem , lmem , and mem . Structured clause nodes appear in cmem , and structured literal nodes
appear in lmem . Each clause points to a sequential list of literals and η’s in mem ; each literal points to
a linked list of clause slots in mem , showing where that literal occurs in the problem. The literal nodes in
lmem also hold ηl and πl.
As in most previous programs of this series, the literals x and x̄ are represented internally by 2k and 2k+1

when x is variable number k.
The symbolic names of variables are kept separately in an array called nmem .

〈Type definitions 6 〉 +≡
typedef struct {
double eta ; /∗ the external force on this literal ∗/
double pi ; /∗ this literal’s current π value ∗/
uint zf ; /∗ the number of suppressed zero factors in pi ∗/
uint link ; /∗ first occurrence of the literal in mem , plus 1 ∗/
int rating ; /∗ +1 positive, −1 negative, 0 wishy-washy or wild ∗/

} literal; /∗ would it go faster if I added four more bytes of padding? ∗/
typedef struct {
uint start ; /∗ where the literal list starts in mem ∗/
uint size ; /∗ number of remaining literals in clause postprocessing phase ∗/

} clause;
typedef struct {
union { double d;
ullng u;

} eta ; /∗ η message for a literal ∗/
uint lit ; /∗ number of that literal ∗/
uint next ; /∗ where that literal next appears in mem , plus 1 ∗/

} mem item;
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25. 〈Global variables 4 〉 +≡
clause ∗cmem ; /∗ the master array of clauses ∗/
literal ∗lmem ; /∗ the master array of literals ∗/
mem item ∗mem ; /∗ the master array of literals in clauses ∗/
mem item ∗cur mcell ; /∗ the current cell of interest in mem ∗/
octa ∗nmem ; /∗ the master array of symbolic variable names ∗/
double ∗gam ; /∗ temporary array to hold gamma ratios ∗/

26. Here is a subroutine that prints a clause symbolically. It illustrates some of the conventions of the
data structures that have been explained above. I use it only for debugging.

〈Subroutines 26 〉 ≡
void print clause (uint c)
{ /∗ the first clause is called clause 1, not 0 ∗/
register uint l, ll ;

fprintf (stderr , "%d:\n", c); /∗ show the clause number ∗/
for (l = cmem [c− 1].start ; l < cmem [c].start ; l++) {
ll = mem [l].lit ;
fprintf (stderr , " %s%.8s(%d), eta=%.15g\n", ll & 1 ? "~" : "", nmem [ll ≫ 1].ch8 , ll ≫ 1,

mem [l].eta .d);
}

}

See also sections 27 and 47.

This code is used in section 3.

27. Another simple subroutine shows the two π and η values for a given variable.

〈Subroutines 26 〉 +≡
void print var (uint k)
{
register uint l = k ≪ 1;

fprintf (stderr , "pi(%.8s)=%.15g(%d), eta(%.8s)=%.15g, ", nmem [k].ch8 , lmem [l].pi , lmem [l].zf ,
nmem [k].ch8 , lmem [l].eta );

fprintf (stderr , "pi(~%.8s)=%.15g(%d), eta(~%.8s)=%.15g\n", nmem [k].ch8 , lmem [l + 1].pi ,
lmem [l + 1].zf , nmem [k].ch8 , lmem [l + 1].eta );

}
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28. Initializing the real data structures. We’re ready now to convert the temporary chunks of data
into the form we want, and to recycle those chunks.

〈Set up the main data structures 28 〉 ≡
〈Allocate the main arrays 29 〉;
〈Zero the links 30 〉;
〈Copy all the temporary cells to the mem and cmem arrays in proper format 31 〉;
〈Copy all the temporary variable nodes to the nmem array in proper format 33 〉;
〈Check consistency 34 〉;

This code is used in section 3.

29. 〈Allocate the main arrays 29 〉 ≡
free (buf ); free (hash ); /∗ a tiny gesture to make a little room ∗/
lmem = (literal ∗) malloc ((vars + vars + 1) ∗ sizeof (literal));
if (¬lmem ) {
fprintf (stderr , "Oops, I can’t allocate the lmem array!\n");
exit (−12);

}
bytes = (vars + vars + 1) ∗ sizeof (literal);
nmem = (octa ∗) malloc (vars ∗ sizeof (octa));
if (¬nmem ) {
fprintf (stderr , "Oops, I can’t allocate the nmem array!\n");
exit (−13);

}
bytes += vars ∗ sizeof (octa);
mem = (mem item ∗) malloc (cells ∗ sizeof (mem item));
if (¬mem ) {
fprintf (stderr , "Oops, I can’t allocate the big mem array!\n");
exit (−10);

}
bytes += cells ∗ sizeof (mem item);
cmem = (clause ∗) malloc ((clauses + 1) ∗ sizeof (clause));
if (¬cmem ) {
fprintf (stderr , "Oops, I can’t allocate the cmem array!\n");
exit (−11);

}
bytes += (clauses + 1) ∗ sizeof (clause);

This code is used in section 28.

30. 〈Zero the links 30 〉 ≡
for (l = vars + vars ; l; l−−) o, lmem [l − 1].link = 0;

This code is used in section 28.
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31. 〈Copy all the temporary cells to the mem and cmem arrays in proper format 31 〉 ≡
for (c = clauses , cur mcell = mem + cells , kk = 0; c; c−−) {
o, cmem [c].start = cur mcell −mem ;
k = 0;
〈 Insert the cells for the literals of clause c 32 〉;
if (k > kk ) kk = k; /∗ maximum clause size seen so far ∗/

}
if (cur mcell 6= mem ) {
fprintf (stderr , "Confusion about the number of cells!\n");
exit (−99);

}
o, cmem [0].start = 0;
gam = (double ∗) malloc (kk ∗ sizeof (double));
if (¬gam ) {
fprintf (stderr , "Oops, I can’t allocate the gamma array!\n");
exit (−16);

}
bytes += kk ∗ sizeof (double);

This code is used in section 28.

32. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

〈 Insert the cells for the literals of clause c 32 〉 ≡
for (i = 0; i < 2; k++) {
〈Move cur cell backward to the previous cell 20 〉;
i = hack out (∗cur cell );
p = hack clean (∗cur cell )~serial ;
cur mcell −−;
o, cur mcell~ lit = l = p+ p+ (i& 1);
oo , cur mcell~next = lmem [l].link ;
o, lmem [l].link = cur mcell −mem + 1;

}

This code is used in section 31.

33. 〈Copy all the temporary variable nodes to the nmem array in proper format 33 〉 ≡
for (c = vars ; c; c−−) {
〈Move cur tmp var backward to the previous temporary variable 21 〉;
o, nmem [c− 1].lng = cur tmp var~name .lng ;

}

This code is used in section 28.

34. We should now have unwound all the temporary data chunks back to their beginnings.

〈Check consistency 34 〉 ≡
if (cur cell 6= &cur chunk~cell [0] ∨ cur chunk~prev 6= Λ ∨ cur tmp var 6=

&cur vchunk~var [0] ∨ cur vchunk~prev 6= Λ) {
fprintf (stderr , "This can’t happen (consistency check failure)!\n");
exit (−14);

}
free (cur chunk ); free (cur vchunk );

This code is used in section 28.



§35 SAT9 DOING IT 15

35. Doing it. So we take surveys.

〈Solve the problem 35 〉 ≡
factor = 1.0;
〈 Initialize all η’s to random fractions 37 〉;
for (iter = 0; iter < max iter ; iter ++) {
if ((iter & 1) ∧ iter ≥ min iter ) {
〈Adjust the reinforcement fields 39 〉;
〈Exit if the clauses are pseudo-satisfied 40 〉;

}
if (verbose & show choices ) fprintf (stderr , "beginning iteration %d\n", iter + 1);
〈Compute the π’s 38 〉;
〈Update the η’s 41 〉;
if (verbose & show details ) fprintf (stderr , " (max diff %.15g, %lld mems)\n",max diff ,mems );
if (delta ∧ (mems ≥ thresh )) {
thresh += delta ;
fprintf (stderr , " after %lld mems, iteration %d had max diff %g\n",mems , iter +1,max diff );

}
if (max diff < threshold ∧ iter ≥ min iter ) break;

}
〈Output a reduced problem 42 〉;

This code is used in section 3.

36. 〈Global variables 4 〉 +≡
int iter ; /∗ number of the current iteration ∗/
double acc , etabar , pi0 , pi1 , old eta , new eta , new gam , factor , rein , diff ;
/∗ intermediate registers for floating-point calculations ∗/

double max diff ; /∗ biggest change from old eta to new eta ∗/
double factor ; /∗ damper t if we’ve reinforced t times ∗/
int azf ; /∗ number of zero factors suppressed from acc ∗/
int max iter ;

37. The macro gb next rand ( ) delivers a 31-bit random integer, and my convention is to charge four mems
whenever it is called.
The initial values of ηc→l are random, but the initial values of the external fields ηl are zero.
After this point the computation becomes deterministic.

〈 Initialize all η’s to random fractions 37 〉 ≡
for (k = 0; k < cells ; k++) mems += 5,mem [k].eta .d = ((double)(gb next rand ( )))/2147483647.0;
for (k = 0; k < vars + vars ; k += 2) ooo , lmem [k].eta = 0.0, lmem [k + 1].eta = 0.0;

This code is used in section 35.

38. 〈Compute the π’s 38 〉 ≡
for (l = 0; l < vars + vars ; l++) {
if (o, lmem [l].eta ≡ 1.0) acc = 1.0, azf = 1;
else acc = 1.0− lmem [l].eta , azf = 0;
for (j = lmem [l].link ; j; j = mem [j − 1].next ) {
o, etabar = 1.0−mem [j − 1].eta .d;
if (etabar ≡ 0.0) azf ++;
else acc ∗= etabar ;

}
oo , lmem [l].zf = azf , lmem [l].pi = acc ;

}

This code is used in section 35.
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39. Either ηl or ηl̄ is zero; the other is (1− factor ) times |p− q|, where p and q are the normalized forces
that favor l and l̄.
In this loop l = 2k, when we process variable k. The rating field of l is set to +1, 0, or −1 if we currently

rate the variable’s value as 1, ∗, or 0.
This rating “field” is based on what the physicists also call a “field,” but in a different context: They

consider that literal l tends to be (1, 0, ∗) with probabilities that are respectively proportional to (πl̄(1−πl),
πl(1−πl̄), πl̄πl). These probabilities can be normalized so that they are (p, q, r) with p + q + r = 1. The
rating is 0 if and only if r ≥ max{p, q}; otherwise it’s +1 when p > q, or −1 when p < q. The condition
r ≥ max{p, q} turns out to be equivalent to saying that πl and πl̄ are both ≥ 0.5. Later we will use |p− q|
to decide the “bias” of a literal.

〈Adjust the reinforcement fields 39 〉 ≡
{
factor ∗= damper ;
rein = 1.0− factor ;
if (verbose & show details ) fprintf (stderr , " (rein=%.15g)\n", rein );
for (l = 0; l < vars + vars ; l += 2) {
if (o, lmem [l].zf ) pi0 = 0.0;
else o, pi0 = lmem [l].pi ;
if (o, lmem [l + 1].zf ) pi1 = 0.0;
else o, pi1 = lmem [l+ 1].pi ;
if (pi0 + pi1 ≡ 0.0) {
if (verbose & show basics )
fprintf (stderr , "Sorry, a contradiction was found after iteration %d!\n", iter );

goto contradiction ;
}
if (pi1 > pi0 ) {
o, lmem [l].rating = (pi0 ≥ 0.5 ? 0 : 1);
if ((verbose & show gory details ) ∧ lmem [l + 1].eta )
fprintf (stderr , " eta(~%.8s) reset\n", nmem [l ≫ 1].ch8 );

oo , lmem [l].eta = rein ∗ (pi1 − pi0 )/(pi0 + pi1 − pi0 ∗ pi1 ), lmem [l + 1].eta = 0.0;
} else {
o, lmem [l].rating = (pi1 ≥ 0.5 ? 0 : −1);
if ((verbose & show gory details ) ∧ lmem [l].eta )
fprintf (stderr , " eta(%.8s) reset\n", nmem [l ≫ 1].ch8 );

oo , lmem [l + 1].eta = rein ∗ (pi0 − pi1 )/(pi0 + pi1 − pi0 ∗ pi1 ), lmem [l].eta = 0.0;
}

}
}

This code is used in section 35.
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40. A clause is “pseudo-satisfied” if it contains a variable whose current value is rated ∗, or if it is satisfied
in the normal way. With luck, we get to a pseudo-satisfied state before max diff gets small. (This seems
to be a transient phenomenon in many examples: If we wait for max diff to get small, the π’s might all be
approaching 1 and very few variables would become fixed.)

〈Exit if the clauses are pseudo-satisfied 40 〉 ≡
for (k = c = 0; c < clauses ; c++) {
for (o; k < cmem [c+ 1].start ; k++) {
oo , l = mem [k].lit , p = lmem [l &−2].rating ;
if (p ≡ 0) goto ok ;
if (((int) p < 0) ≡ (l & 1)) goto ok ;

}
goto not ok ; /∗ clause not pseudo-satisfied ∗/

ok : k = cmem [c+ 1].start ;
continue;

}
if (verbose & show details )
fprintf (stderr , "Clauses pseudo−satisfied on iteration %d\n", iter + 1);

break; /∗ yes, we made it through all of them ∗/
not ok :

This code is used in section 35.
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41. If the clause is l1∨· · ·∨ lk, we compute ratios γ1, . . . , γk representing the perceived difficulty of making
li true; then ηi is the product γ1 . . . γi−1γi+1 . . . γk.

〈Update the η’s 41 〉 ≡
max diff = 0.0;
for (k = c = 0; c < clauses ; c++) {
acc = 1.0, azf = 0;
for (o, j = 0; k < cmem [c+ 1].start ; j++, k++) {
o, l = mem [k].lit ;
if (o, lmem [l ⊕ 1].zf ) pi0 = 0.0;
else o, pi0 = lmem [l⊕ 1].pi ;
o, old eta = mem [k].eta .d;
if (old eta ≡ 1.0) {
if (o, lmem [l].zf > 1) pi1 = 0.0;
else o, pi1 = lmem [l].pi ;

} else if (o, lmem [l].zf ) pi1 = 0.0;
else o, pi1 = lmem [l].pi /(1.0− old eta );
pi1 = pi1 ∗ (1.0− pi0 );
if (pi1 ≡ 0.0) azf ++, o, gam [j] = 0.0;
else {
new gam = pi1 /(pi1 + pi0 );
o, gam [j] = new gam ;
acc ∗= new gam ;

}
}
for (i = j; i; i−−) {
if (o, gam [j − i] ≡ 0.0) {
if (azf > 1) new eta = 0.0;
else new eta = acc ;

} else if (azf ) new eta = 0.0;
else new eta = acc/gam [j − i];
o, diff = new eta −mem [k − i].eta .d;
if (diff > 0) {
if (diff > max diff ) max diff = diff ;

} else if (−diff > max diff ) max diff = −diff ;
o,mem [k − i].eta .d = new eta ;

}
}

This code is used in section 35.
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42. The aftermath. When convergence or pseudo-satisfiability is achieved, we want to use the values
of πl to decide which variables should probably become 0 or 1. For example, if πl is small but πl̄ is large,
literal l should be true.

〈Output a reduced problem 42 〉 ≡
if (iter ≡ max iter ) {
if (verbose & show basics ) fprintf (stderr , "The messages didn’t converge.\n");
goto contradiction ;

}
if (verbose & show pis ) 〈Print all the π’s 43 〉;
if (verbose & show histogram ) 〈Print a two-dimension histogram of πv versus πv̄ 44 〉;
〈Decide which variables to fix 45 〉;
〈Preprocess the clauses for reduction 46 〉;
〈Reduce the problem 52 〉;
〈Output the reduced problem 53 〉;
goto done ;

contradiction : printf ("~~?\n"); done :

This code is used in section 35.

43. Here we show not only πv and πv̄ for each variable v, but also the associated “fields” (p, q, r) described
above.

〈Print all the π’s 43 〉 ≡
{
if (iter < max iter ) fprintf (stderr , "converged after %d iterations.\n", iter + 1);
else fprintf (stderr , "no convergence (diff %g) after %d iterations.\n",max diff ,max iter );
fprintf (stderr , "variable      pi(v)        pi(~v)         1    0    *\n");
for (k = 0; k < vars ; k++) {
double den ;

fprintf (stderr , "%8.8s %10.7f(%d) %10.7f(%d)", nmem [k].ch8 , lmem [k + k].pi , lmem [k + k].zf ,
lmem [k + k + 1].pi , lmem [k + k + 1].zf );

pi0 = lmem [k + k].pi ;
if (lmem [k + k].zf ) pi0 = 0.0;
pi1 = lmem [k + k + 1].pi ;
if (lmem [k + k + 1].zf ) pi1 = 0.0;
den = pi0 + pi1 − pi0 ∗ pi1 ;
fprintf (stderr , "    %4.2f %4.2f %4.2f\n", pi1 ∗ (1−pi0 )/den , pi0 ∗ (1−pi1 )/den , pi0 ∗pi1 /den );

}
}

This code is used in section 42.
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44. 〈Print a two-dimension histogram of πv versus πv̄ 44 〉 ≡
{
uint hist [10][10];

for (j = 0; j < 10; j++)
for (k = 0; k < 10; k++) hist [j][k] = 0;

for (k = 0; k < vars ; k++) {
i = (int)(10 ∗ lmem [k + k].pi ), j = (int)(10 ∗ lmem [k + k + 1].pi );
if (lmem [k + k].zf ) i = 0;
if (lmem [k + k + 1].zf ) j = 0;
if (i ≡ 10) i = 9;
if (j ≡ 10) j = 9;
hist [i][j]++;

}
fprintf (stderr , "Histogram of the pi’s, after %d iterations:\n", iter + 1);
for (j = 10; j; j−−) {
for (i = 0; i < 10; i++) fprintf (stderr , "%7d", hist [i][j − 1]);
fprintf (stderr , "\n");

}
}

This code is used in section 42.
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45. The difference b = 100 |p− q| in the field of variable v represents v’s percentage bias towards a non-∗
value. All variables for which b is greater than or equal to the confidence parameter are placed into bucket b.
Then we go through buckets 100, 99, etc., fixing those variables. We also make a “unit” bucket for literals
that appear in unit clauses after reduction.
Links within the bucket lists are odd numbers, terminated by 2; they appear in the rating fields of lmem [1],

lmem [3], etc.
It’s probably unwise for the user to make confidence < 50, because the pseudo-satisfiability test rates a

variable of field (.5, 0, .5) as a ‘∗’. But we haven’t ruled that out; after all, this program is just experimental,
and it’s sometimes interesting to explore the consequences of unwise decisions. Therefore we recompute the
rating fields in lmem [0], lmem [2], etc., so that they merely reflect the sign of p− q.

〈Decide which variables to fix 45 〉 ≡
for (k = confidence ; k ≤ 100; k++) o, bucket [k] = 2;
unit = 2;
for (l = 0; l < vars + vars ; l += 2) {
if (o, lmem [l].zf ) pi0 = 0.0;
else o, pi0 = lmem [l].pi ;
if (o, lmem [l + 1].zf ) pi1 = 0.0;
else o, pi1 = lmem [l + 1].pi ;
if (pi0 + pi1 ≡ 0.0) {
if (verbose & show basics ) fprintf (stderr , "Sorry, a contradiction was found!\n");
goto contradiction ;

}
acc = (pi1 − pi0 )/(pi0 + pi1 − pi0 ∗ pi1 );
o, lmem [l].rating = acc > 0 ? +1 : acc < 0 ? −1 : 0;
if (acc < 0) acc = −acc ;
j = (int)(100.0 ∗ acc);
if (j ≥ confidence ) {
oo , lmem [l + 1].rating = bucket [j];
o, bucket [j] = l + 1;
fixcount ++;

}
}
if (verbose & show basics )
fprintf (stderr , "(fixing %d variables after %d iterations, e=%g)\n", fixcount , iter+1,max diff );

This code is used in section 42.

46. We’re done with the eta fields in the clauses of cells. So we replace them now with pointers to the
relevant clause numbers.
At this point we also take note of unit clauses that might be present in the input, just in case the user

didn’t reduce them away before presenting the problem.

#define cl (p) mem [p].eta .u /∗ new use for the eta field ∗/

〈Preprocess the clauses for reduction 46 〉 ≡
for (k = c = 0; c < clauses ; c++) {
for ( ; k < cmem [c+ 1].start ; k++) o, cl (k) = c;
oo , cmem [c].size = k − cmem [c].start ;
if (cmem [c].size ≡ 1) {
〈Enforce the unit literal mem [k − 1].lit 51 〉;

}
}

This code is used in section 42.
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47. Here now is a subroutine that fixes the variables in a given bucket list.

〈Subroutines 26 〉 +≡
int fixlist (register int k, int b)
{
register int c, j, l, ll , p, q;

for ( ; k & 1; o, k = lmem [k].rating ) {
if (o, lmem [k − 1].rating < 0) l = k;
else l = k − 1;
printf (" %s%.8s", l & 1 ? "~" : "", nmem [l ≫ 1].ch8 );
〈Mark the clauses that contain l satisfied 48 〉;
〈Remove l̄ from all clauses 49 〉;

}
return 1;

}

48. 〈Mark the clauses that contain l satisfied 48 〉 ≡
for (o, p = lmem [l].link ; p; o, p = mem [p− 1].next ) {
oo , c = cl (p− 1), j = cmem [c].size ;
if (j) o, cmem [c].size = 0;

}

This code is used in section 47.

49. Removed literals are flagged by a special code in their next field.

#define removed (uint)(−1)

〈Remove l̄ from all clauses 49 〉 ≡
for (o, p = lmem [l ⊕ 1].link ; p; p = q) {
o, q = mem [p− 1].next ;
oo , c = cl (p− 1), j = cmem [c].size ;
if (j ≡ 0) continue; /∗ clause already satisfied ∗/
oo ,mem [p− 1].next = removed , cmem [c].size = j − 1;
if (j ≡ 2) {
for (o, p = cmem [c].start ; o,mem [p].next ≡ removed ; p++) ;
〈Enforce the unit literal mem [p].lit 50 〉;

}
}

This code is used in section 47.
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50. I expect that unit literals will have become sufficiently biased that we’ve already decided to fix them.
But the unit bucket is there just in case we didn’t.

〈Enforce the unit literal mem [p].lit 50 〉 ≡
ll = mem [p].lit ;
if (ll & 1) {
if (o, lmem [ll ].rating ) {
if (o, lmem [ll − 1].rating > 0) goto contra ;

} else {
o, lmem [ll − 1].rating = −1;
o, lmem [ll ].rating = unit , unit = ll , unitcount ++;

}
} else {
if (o, lmem [ll + 1].rating ) {
if (o, lmem [ll ].rating < 0) {
contra : printf ("\n");
fprintf (stderr , "Oops, clause %d is contradicted", c);
if (b ≥ 0) fprintf (stderr , " in bucket %d!\n", b);
else fprintf (stderr , " while propagating unit literals!\n");
return 0;

}
} else {
o, lmem [ll ].rating = +1;
o, lmem [ll + 1].rating = unit , unit = ll + 1, unitcount ++;

}
}

This code is used in section 49.

51. 〈Enforce the unit literal mem [k − 1].lit 51 〉 ≡
ll = mem [k − 1].lit ;
if (ll & 1) {
if (o, lmem [ll ].rating ) {
if (o, lmem [ll − 1].rating > 0) goto contra ;

} else {
o, lmem [ll − 1].rating = −1;
o, lmem [ll ].rating = unit , unit = ll , unitcount ++;

}
} else {
if (o, lmem [ll + 1].rating ) {
if (o, lmem [ll ].rating < 0) {
contra : printf ("\n");
fprintf (stderr , "Oops, clause %d is contradicted!\n", c);
goto contradiction ;

}
} else {
o, lmem [ll ].rating = +1;
o, lmem [ll + 1].rating = unit , unit = ll + 1, unitcount ++;

}
}

This code is used in section 46.
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52. 〈Reduce the problem 52 〉 ≡
for (k = 100; k ≥ confidence ; k−−)
if (ooo , fixlist (bucket [k], k) ≡ 0) goto contradiction ;

while (unit & 1) {
p = unit , unit = 2;
if (oo , fixlist (p,−1) ≡ 0) goto contradiction ;

}
printf ("\n");
if (unitcount ∧ (verbose & show basics )) fprintf (stderr ,

"(unit propagation fixed %d more variable%s)\n", unitcount , unitcount ≡ 1 ? "" : "s");

This code is used in section 42.

53. 〈Output the reduced problem 53 〉 ≡
sprintf (name buf , "/tmp/sat9−%d.dat", random seed );
out file = fopen (name buf , "w");
if (¬out file ) {
fprintf (stderr , "I can’t open ‘%s’ for writing!\n");
exit (−668);

}
for (kk = k = p = c = 0; c < clauses ; c++) {
o, i = cmem [c].size ;
if (i ≡ 0) {
o, k = cmem [c+ 1].start ;
continue;

}
p++;
while (i > kk ) gam [kk ++] = 0;
gam [i− 1] += 1;
for (o; k < cmem [c+ 1].start ; k++)
if (o,mem [k].next 6= removed ) {
l = mem [k].lit ;
fprintf (out file , " %s%.8s", l& 1 ? "~" : "", nmem [l ≫ 1].ch8 );

}
fprintf (out file , "\n");

}
fclose (out file );
fprintf (stderr , "Reduced problem of %d clauses written on file %s\n", p, name buf );
for (i = 0; i < kk ; i++)
if (gam [i]) fprintf (stderr , " (%g %d−clauses)\n", gam [i], i+ 1);

This code is used in section 42.

54. 〈Global variables 4 〉 +≡
int bucket [101], unit ;
int fixcount , unitcount ;
char name buf [32];
FILE ∗out file ;
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55. Index.

acc : 36, 38, 41, 45.
argc : 3, 5.
argv : 3, 5.
azf : 36, 38, 41.
b: 47.
bad cell : 8, 12, 14, 20.
bad tmp var : 8, 12, 13, 21.
bucket : 45, 52, 54.
buf : 8, 9, 10, 11, 16, 19, 29.
buf size : 4, 5, 9, 10.
bytes : 3, 4, 29, 31.
c: 3, 26, 47.
cell : 7, 14, 20, 34.
cells : 8, 10, 11, 22, 29, 31, 37.
cells per chunk : 7, 14, 20.
chunk: 7, 8, 14, 20.
chunk struct: 7.
ch8 : 6, 16, 26, 27, 39, 43, 47, 53.
cl : 46, 48, 49.
clause: 24, 25, 29.
clause done : 11.
clauses : 8, 10, 11, 12, 16, 19, 22, 29, 31, 40,

41, 46, 53.
cmem : 24, 25, 26, 29, 31, 40, 41, 46, 48, 49, 53.
confidence : 4, 5, 45, 52.
contra : 50, 51.
contradiction : 39, 42, 45, 51, 52.
cur cell : 8, 12, 14, 20, 32, 34.
cur chunk : 8, 14, 20, 34.
cur mcell : 25, 31, 32.
cur tmp var : 8, 12, 13, 16, 17, 21, 33, 34.
cur vchunk : 8, 13, 21, 34.
d: 24.
damper : 4, 5, 36, 39.
delta : 4, 5, 35.
den : 43.
diff : 36, 41.
done : 42.
empty clause : 11, 16, 18.
eta : 24, 26, 27, 37, 38, 39, 41, 46.
etabar : 36, 38.
exit : 5, 9, 10, 11, 13, 14, 16, 29, 31, 34, 53.
factor : 35, 36, 39.
fclose : 53.
fcount : 3.
fgets : 10.
fixcount : 45, 54.
fixlist : 47, 52.
fopen : 53.
fprintf : 3, 5, 9, 10, 11, 13, 14, 16, 19, 22, 26, 27, 29,

31, 34, 35, 39, 40, 42, 43, 44, 45, 50, 51, 52, 53.

free : 20, 21, 29, 34.
g: 3.
gam : 25, 31, 41, 53.
gb init rand : 9.
gb next rand : 15, 37.
gb rand : 4.
h: 3.
hack clean : 32.
hack in : 12.
hack out : 32.
hash : 8, 9, 17, 29.
hash bits : 8, 15, 16.
hbits : 4, 5, 9, 10, 16.
hist : 44.
i: 3.
ii : 3.
imems : 3, 4.
iter : 35, 36, 39, 40, 42, 43, 44, 45.
j: 3, 47.
k: 3, 27, 47.
kk : 3, 31, 53.
l: 3, 26, 27, 47.
link : 24, 30, 32, 38, 48, 49.
lit : 24, 26, 32, 40, 41, 50, 51, 53.
literal: 24, 25, 29.
ll : 3, 26, 47, 50, 51.
lmem : 24, 25, 27, 29, 30, 32, 37, 38, 39, 40, 41,

43, 44, 45, 47, 48, 49, 50, 51.
lng : 6, 16, 17, 33.
main : 3.
malloc : 9, 13, 14, 29, 31.
max diff : 35, 36, 40, 41, 43, 45.
max iter : 4, 5, 35, 36, 42, 43.
mem : 24, 25, 26, 29, 31, 32, 37, 38, 40, 41, 46,

48, 49, 50, 51, 53.
mem item: 24, 25, 29.
mems : 3, 4, 35, 37.
min iter : 4, 5, 35.
name : 6, 16, 17, 33.
name buf : 53, 54.
new chunk : 14.
new eta : 36, 41.
new gam : 36, 41.
new vchunk : 13.
next : 6, 17, 24, 32, 38, 48, 49, 53.
nmem : 24, 25, 26, 27, 29, 33, 39, 43, 47, 53.
not ok : 40.
nullclauses : 8, 10, 11, 19.
o: 3.
octa: 6, 25, 29.
ok : 40.
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old chunk : 20.
old eta : 36, 41.
old vchunk : 21.
oo : 3, 32, 38, 39, 40, 45, 46, 48, 49, 52.
ooo : 3, 37, 52.
out file : 53, 54.
p: 3, 12, 47.
pi : 24, 27, 38, 39, 41, 43, 44, 45.
pi0 : 36, 39, 41, 43, 45.
pi1 : 36, 39, 41, 43, 45.
prev : 6, 7, 13, 14, 20, 21, 34.
print clause : 26.
print var : 27.
printf : 42, 47, 50, 51, 52.
q: 3, 47.
r: 3.
random seed : 4, 5, 9, 53.
rating : 24, 39, 40, 45, 47, 50, 51.
rein : 36, 39.
removed : 49, 53.
serial : 6, 17, 32.
show basics : 3, 4, 39, 42, 45, 52.
show choices : 4, 35.
show details : 4, 35, 39, 40.
show gory details : 4, 39.
show histogram : 4, 42.
show pis : 4, 42.
size : 24, 46, 48, 49, 53.
sprintf : 53.
sscanf : 5.
stamp : 6, 12, 17, 18.
start : 24, 26, 31, 40, 41, 46, 49, 53.
stderr : 3, 5, 9, 10, 11, 13, 14, 16, 19, 22, 26, 27, 29,

31, 34, 35, 39, 40, 42, 43, 44, 45, 50, 51, 52, 53.
stdin : 2, 8, 10.
strlen : 10.
thresh : 4, 5, 35.
threshold : 4, 5, 35.
tmp var: 6, 7, 8, 9, 12, 32.
tmp var struct: 6.
u: 24.
uint: 3, 6, 8, 24, 26, 27, 44, 49.
ullng: 3, 4, 8, 12, 24, 32.
unit : 45, 50, 51, 52, 54.
unitcount : 50, 51, 52, 54.
u2 : 6.
var : 6, 13, 21, 34.
vars : 8, 10, 17, 22, 29, 30, 33, 37, 38, 39, 43, 44, 45.
vars per vchunk : 6, 13, 21.
vchunk: 6, 8, 13, 21.
vchunk struct: 6.
verbose : 3, 4, 5, 35, 39, 40, 42, 45, 52.

zf : 24, 27, 38, 39, 41, 43, 44, 45.
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〈Adjust the reinforcement fields 39 〉 Used in section 35.

〈Allocate the main arrays 29 〉 Used in section 28.

〈Check consistency 34 〉 Used in section 28.

〈Compute the π’s 38 〉 Used in section 35.

〈Copy all the temporary cells to the mem and cmem arrays in proper format 31 〉 Used in section 28.

〈Copy all the temporary variable nodes to the nmem array in proper format 33 〉 Used in section 28.

〈Decide which variables to fix 45 〉 Used in section 42.

〈Enforce the unit literal mem [k − 1].lit 51 〉 Used in section 46.

〈Enforce the unit literal mem [p].lit 50 〉 Used in section 49.

〈Exit if the clauses are pseudo-satisfied 40 〉 Used in section 35.

〈Find cur tmp var~name in the hash table at p 17 〉 Used in section 12.

〈Global variables 4, 8, 25, 36, 54 〉 Used in section 3.

〈Handle a duplicate literal 18 〉 Used in section 12.

〈 Initialize all η’s to random fractions 37 〉 Used in section 35.

〈 Initialize everything 9, 15 〉 Used in section 3.

〈 Input the clause in buf 11 〉 Used in section 10.

〈 Input the clauses 10 〉 Used in section 3.

〈 Insert the cells for the literals of clause c 32 〉 Used in section 31.

〈 Install a new chunk 14 〉 Used in section 12.

〈 Install a new vchunk 13 〉 Used in section 12.

〈Mark the clauses that contain l satisfied 48 〉 Used in section 47.

〈Move cur cell backward to the previous cell 20 〉 Used in sections 19 and 32.

〈Move cur tmp var backward to the previous temporary variable 21 〉 Used in section 33.

〈Output a reduced problem 42 〉 Used in section 35.

〈Output the reduced problem 53 〉 Used in section 42.

〈Preprocess the clauses for reduction 46 〉 Used in section 42.

〈Print a two-dimension histogram of πv versus πv̄ 44 〉 Used in section 42.

〈Print all the π’s 43 〉 Used in section 42.

〈Process the command line 5 〉 Used in section 3.

〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 16 〉 Used

in section 12.

〈Reduce the problem 52 〉 Used in section 42.

〈Remove l̄ from all clauses 49 〉 Used in section 47.

〈Remove all variables of the current clause 19 〉 Used in section 11.

〈Report the successful completion of the input phase 22 〉 Used in section 3.

〈Scan and record a variable; negate it if i ≡ 1 12 〉 Used in section 11.

〈Set up the main data structures 28 〉 Used in section 3.

〈Solve the problem 35 〉 Used in section 3.

〈Subroutines 26, 27, 47 〉 Used in section 3.

〈Type definitions 6, 7, 24 〉 Used in section 3.

〈Update the η’s 41 〉 Used in section 35.

〈Zero the links 30 〉 Used in section 28.
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