
§1 SAT10 INTRO 1

July 22, 2021 at 04:22

1. Intro. This program is part of a series of “SAT-solvers” that I’m putting together for my own
education as I prepare to write Section 7.2.2.2 of The Art of Computer Programming. My intent is to
have a variety of compatible programs on which I can run experiments to learn how different approaches
work in practice.
After experience with ten previous approaches, I finally feel ready to write the program that I plan

to describe first: a very simple “no-frills” algorithm that does pretty well on not-too-large problems in
spite of being rather short and sweet. The model for this program is the “fast one-level algorithm” of
Cynthia A. Brown and Paul W. Purdom, Jr., found in their paper “An empirical comparison of backtracking
algorithms,” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4 (1982), 309–316.
This almost-forgotten paper introduced the idea of watched literals, a concept that became famous when it
was rediscovered and generalized almost two decades later. Brown and Purdom noticed that the operations of
backtracking became quite simple when there is one watched literal in each clause; later researchers, unaware
of this previous work, discovered how to speed up the process of so-called unit propagation by having two

watched literals per clause. By presenting the Brown–Purdom algorithm first, I hope to introduce my readers
to this concept in a natural and gradual way.
[Note: This program, SAT10, is essentially the prototype for Algorithm 7.2.2.2D.]
If you have already read SAT0 (or some other program of this series), you might as well skip now past all

the code for the “I/O wrapper,” because you have seen it before.
The input on stdin is a series of lines with one clause per line. Each clause is a sequence of literals

separated by spaces. Each literal is a sequence of one to eight ASCII characters between ! and }, inclusive,
not beginning with ~, optionally preceded by ~ (which makes the literal “negative”). For example, Rivest’s
famous clauses on four variables, found in 6.5–(13) and 7.1.1–(32) of TAOCP, can be represented by the
following eight lines of input:

x2 x3 ~x4

x1 x3 x4

~x1 x2 x4

~x1 ~x2 x3

~x2 ~x3 x4

~x1 ~x3 ~x4

x1 ~x2 ~x4

x1 x2 ~x3

Input lines that begin with ~ are ignored (treated as comments). The output will be ‘~’ if the input clauses
are unsatisfiable. Otherwise it will be a list of noncontradictory literals that cover each clause, separated by
spaces. (“Noncontradictory” means that we don’t have both a literal and its negation.) The input above
would, for example, yield ‘~’; but if the final clause were omitted, the output would be ‘~x1 ~x2 x3’, in some
order, possibly together with either x4 or ~x4 (but not both). No attempt is made to find all solutions; at
most one solution is given.
The running time in “mems” is also reported, together with the approximate number of bytes needed for

data storage. One “mem” essentially means a memory access to a 64-bit word. (These totals don’t include
the time or space needed to parse the input or to format the output.)

2 INTRO SAT10 §2

2. So here’s the structure of the program. (Skip ahead if you are impatient to see the interesting stuff.)

#define o mems++ /∗ count one mem ∗/
#define oo mems += 2 /∗ count two mems ∗/
#define ooo mems += 3 /∗ count three mems ∗/
#define O "%" /∗ used for percent signs in format strings ∗/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "gb_flip.h"

typedef unsigned int uint; /∗ a convenient abbreviation ∗/
typedef unsigned long long ullng; /∗ ditto ∗/

〈Type definitions 5 〉;
〈Global variables 3 〉;
〈Subroutines 28 〉;

main (int argc , char ∗argv [])
{
register uint h, i, j, l, p, q, r, level , kk , pp , qq , ll , force , nextmove ;
register int c, cc , k, v0 , v, vv , vvv ;

〈Process the command line 4 〉;
〈 Initialize everything 8 〉;
〈 Input the clauses 9 〉;
if (verbose & show basics) 〈Report the successful completion of the input phase 22 〉;
〈Set up the main data structures 33 〉;
imems = mems ,mems = 0;
〈Solve the problem 40 〉;

done : if (verbose & show basics)
fprintf (stderr , "Altogether "O"llu+"O"llu mems, "O"llu bytes, "O"llu nodes.\n", imems ,

mems , bytes , nodes);
}

§3 SAT10 INTRO 3

3. #define show basics 1 /∗ verbose code for basic stats ∗/
#define show choices 2 /∗ verbose code for backtrack logging ∗/
#define show details 4 /∗ verbose code for further commentary ∗/
#define show unused vars 8 /∗ verbose code to list variables not in solution ∗/

〈Global variables 3 〉 ≡
int random seed = 0; /∗ seed for the random words of gb rand ∗/
int verbose = show basics + show unused vars ; /∗ level of verbosity ∗/
int show choices max = 1000000; /∗ above this level, show choices is ignored ∗/
int hbits = 8; /∗ logarithm of the number of the hash lists ∗/
int buf size = 1024; /∗ must exceed the length of the longest input line ∗/
FILE ∗out file ; /∗ file for optional output ∗/
char ∗out name ; /∗ its name ∗/
FILE ∗primary file ; /∗ file for optional input ∗/
char ∗primary name ; /∗ its name ∗/
int primary vars ; /∗ the number of primary variables ∗/
ullng imems , mems ; /∗ mem counts ∗/
ullng bytes ; /∗ memory used by main data structures ∗/
ullng nodes ; /∗ total number of branch nodes initiated ∗/
ullng thresh = 0; /∗ report when mems exceeds this, if delta 6= 0 ∗/
ullng delta = 0; /∗ report every delta or so mems ∗/
ullng timeout = #1fffffffffffffff; /∗ give up after this many mems ∗/
float eps = 0.1; /∗ parameter for the minimum score of a watch list ∗/

See also sections 7 and 27.

This code is used in section 2.

4 INTRO SAT10 §4

4. On the command line one can specify any or all of the following options:

• ‘v〈 integer 〉’ to enable various levels of verbose output on stderr .
• ‘c〈positive integer 〉’ to limit the levels on which clauses are shown.
• ‘h〈positive integer 〉’ to adjust the hash table size.
• ‘b〈positive integer 〉’ to adjust the size of the input buffer.
• ‘s〈 integer 〉’ to define the seed for any random numbers that are used.
• ‘d〈 integer 〉’ to set delta for periodic state reports.
• ‘e〈float 〉’ to change the eps parameter in rankings of variables for branching.
• ‘x〈filename 〉’ to copy the input plus a solution-eliminating clause to the specified file. If the given problem
is satisfiable in more than one way, a different solution can be obtained by inputting that file.

• ‘V〈filename 〉’ to input a file that lists the names of all “primary” variables. A nonprimary variable will
not be used for branching unless its value is forced, or unless all of the primary variables have already
been assigned a value.

• ‘T〈 integer 〉’ to set timeout : This programwill abruptly terminate, when it discovers thatmems > timeout .

〈Process the command line 4 〉 ≡
for (j = argc − 1, k = 0; j; j−−)
switch (argv [j][0]) {
case ’v’: k |= (sscanf (argv [j] + 1, ""O"d",&verbose)− 1); break;
case ’c’: k |= (sscanf (argv [j] + 1, ""O"d",&show choices max)− 1); break;
case ’h’: k |= (sscanf (argv [j] + 1, ""O"d",&hbits)− 1); break;
case ’b’: k |= (sscanf (argv [j] + 1, ""O"d",&buf size)− 1); break;
case ’s’: k |= (sscanf (argv [j] + 1, ""O"d",&random seed)− 1); break;
case ’d’: k |= (sscanf (argv [j] + 1, ""O"lld",&delta)− 1); thresh = delta ; break;
case ’e’: k |= (sscanf (argv [j] + 1, ""O"f",&eps)− 1); break;
case ’x’: out name = argv [j] + 1, out file = fopen (out name , "w");
if (¬out file) fprintf (stderr , "I can’t open file ‘"O"s’ for output!\n", out name);
break;

case ’V’: primary name = argv [j] + 1, primary file = fopen (primary name , "r");
if (¬primary file) fprintf (stderr , "I can’t open file ‘"O"s’ for input!\n", primary name);
break;

case ’T’: k |= (sscanf (argv [j] + 1, "%lld",&timeout)− 1); break;
default: k = 1; /∗ unrecognized command-line option ∗/
}

if (k ∨ hbits < 0 ∨ hbits > 30 ∨ buf size ≤ 0) {
fprintf (stderr , "Usage: "O"s [v<n>] [c<n>] [h<n>] [b<n>] [s<n>] [d<n>] [e<f>]", argv [0]);
fprintf (stderr , " [x<foo>] [V<foo>] [T<n>] < foo.sat\n");
exit (−1);

}

This code is used in section 2.

§5 SAT10 THE I/O WRAPPER 5

5. The I/O wrapper. The following routines read the input and absorb it into temporary data areas
from which all of the “real” data structures can readily be initialized. My intent is to incorporate these
routines into all of the SAT-solvers in this series. Therefore I’ve tried to make the code short and simple,
yet versatile enough so that almost no restrictions are placed on the sizes of problems that can be handled.
These routines are supposed to work properly unless there are more than 232−1 = 4,294,967,295 occurrences
of literals in clauses, or more than 231 − 1 = 2,147,483,647 variables or clauses.
In these temporary tables, each variable is represented by four things: its unique name; its serial number;

the clause number (if any) in which it has most recently appeared; and a pointer to the previous variable (if
any) with the same hash address. Several variables at a time are represented sequentially in small chunks of
memory called “vchunks,” which are allocated as needed (and freed later).

#define vars per vchunk 341 /∗ preferably (2k − 1)/3 for some k ∗/

〈Type definitions 5 〉 ≡
typedef union {
char ch8 [8];
uint u2 [2];
long long lng ;

} octa;
typedef struct tmp var struct {
octa name ; /∗ the name (one to eight ASCII characters) ∗/
uint serial ; /∗ 0 for the first variable, 1 for the second, etc. ∗/
int stamp ; /∗ m if positively in clause m; −m if negatively there ∗/
struct tmp var struct ∗next ; /∗ pointer for hash list ∗/

} tmp var;

typedef struct vchunk struct {
struct vchunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var var [vars per vchunk];

} vchunk;

See also sections 6, 24, 25, and 26.

This code is used in section 2.

6. Each clause in the temporary tables is represented by a sequence of one or more pointers to the tmp var
nodes of the literals involved. A negated literal is indicated by adding 1 to such a pointer. The first literal of
a clause is indicated by adding 2. Several of these pointers are represented sequentially in chunks of memory,
which are allocated as needed and freed later.

#define cells per chunk 511 /∗ preferably 2k − 1 for some k ∗/

〈Type definitions 5 〉 +≡
typedef struct chunk struct {
struct chunk struct ∗prev ; /∗ previous chunk allocated (if any) ∗/
tmp var ∗cell [cells per chunk];

} chunk;

6 THE I/O WRAPPER SAT10 §7

7. 〈Global variables 3 〉 +≡
char ∗buf ; /∗ buffer for reading the lines (clauses) of stdin ∗/
tmp var ∗∗hash ; /∗ heads of the hash lists ∗/
uint hash bits [93][8]; /∗ random bits for universal hash function ∗/
vchunk ∗cur vchunk ; /∗ the vchunk currently being filled ∗/
tmp var ∗cur tmp var ; /∗ current place to create new tmp var entries ∗/
tmp var ∗bad tmp var ; /∗ the cur tmp var when we need a new vchunk ∗/
chunk ∗cur chunk ; /∗ the chunk currently being filled ∗/
tmp var ∗∗cur cell ; /∗ current place to create new elements of a clause ∗/
tmp var ∗∗bad cell ; /∗ the cur cell when we need a new chunk ∗/
ullng vars ; /∗ how many distinct variables have we seen? ∗/
ullng clauses ; /∗ how many clauses have we seen? ∗/
ullng nullclauses ; /∗ how many of them were null? ∗/
ullng cells ; /∗ how many occurrences of literals in clauses? ∗/
int non clause ; /∗ is the current clause ignorable? ∗/

8. 〈 Initialize everything 8 〉 ≡
gb init rand (random seed);
buf = (char ∗) malloc (buf size ∗ sizeof (char));
if (¬buf) {
fprintf (stderr , "Couldn’t allocate the input buffer (buf_size="O"d)!\n", buf size);
exit (−2);

}
hash = (tmp var ∗∗) malloc (sizeof (tmp var) ≪ hbits);
if (¬hash) {
fprintf (stderr , "Couldn’t allocate "O"d hash list heads (hbits="O"d)!\n", 1 ≪ hbits , hbits);
exit (−3);

}
for (h = 0; h < 1 ≪ hbits ; h++) hash [h] = Λ;

See also section 15.

This code is used in section 2.

§9 SAT10 THE I/O WRAPPER 7

9. The hash address of each variable name has h bits, where h is the value of the adjustable parameter
hbits . Thus the average number of variables per hash list is n/2h when there are n different variables. A
warning is printed if this average number exceeds 10. (For example, if h has its default value, 8, the program
will suggest that you might want to increase h if your input has 2560 different variables or more.)
All the hashing takes place at the very beginning, and the hash tables are actually recycled before any

SAT-solving takes place; therefore the setting of this parameter is by no means crucial. But I didn’t want
to bother with fancy coding that would determine h automatically.

〈 Input the clauses 9 〉 ≡
if (primary file) 〈 Input the primary variables 10 〉;
while (1) {
if (¬fgets (buf , buf size , stdin)) break;
clauses ++;
if (buf [strlen (buf)− 1] 6= ’\n’) {
fprintf (stderr , "The clause on line "O"lld ("O".20s...) is too long for me;\n", clauses ,

buf);
fprintf (stderr , " my buf_size is only "O"d!\n", buf size);
fprintf (stderr , "Please use the command−line option b<newsize>.\n");
exit (−4);

}
〈 Input the clause in buf 11 〉;

}
if (¬primary file) primary vars = vars ;
if ((vars ≫ hbits) ≥ 10) {
fprintf (stderr , "There are "O"lld variables but only "O"d hash tables;\n", vars , 1 ≪ hbits);
while ((vars ≫ hbits) ≥ 10) hbits ++;
fprintf (stderr , " maybe you should use command−line option h"O"d?\n", hbits);

}
clauses −= nullclauses ;
if (clauses ≡ 0) {
fprintf (stderr , "No clauses were input!\n");
exit (−77);

}
if (vars ≥ #80000000) {
fprintf (stderr , "Whoa, the input had "O"llu variables!\n", vars);
exit (−664);

}
if (clauses ≥ #80000000) {
fprintf (stderr , "Whoa, the input had "O"llu clauses!\n", clauses);
exit (−665);

}
if (cells ≥ #100000000) {
fprintf (stderr , "Whoa, the input had "O"llu occurrences of literals!\n", cells);
exit (−666);

}

This code is used in section 2.

8 THE I/O WRAPPER SAT10 §10

10. We input from primary file just as if it were the standard input file, except that all “clauses” are
discarded. (Line numbers in error messages are zero.) The effect is to place the primary variables first in
the list of all variables: A variable is primary if and only if its index is ≤ primary vars .

〈 Input the primary variables 10 〉 ≡
{
while (1) {
if (¬fgets (buf , buf size , primary file)) break;
if (buf [strlen (buf)− 1] 6= ’\n’) {
fprintf (stderr , "The clause on line "O"lld ("O".20s...) is too long for me;\n",

clauses , buf);
fprintf (stderr , " my buf_size is only "O"d!\n", buf size);
fprintf (stderr , "Please use the command−line option b<newsize>.\n");
exit (−4);

}
〈 Input the clause in buf 11 〉;
〈Remove all variables of the current clause 19 〉;

}
cells = nullclauses = 0;
primary vars = vars ;
if (verbose & show basics)
fprintf (stderr , "("O"d primary variables read from "O"s)\n", primary vars , primary name);

}

This code is used in section 9.

11. 〈 Input the clause in buf 11 〉 ≡
for (j = k = non clause = 0; ¬non clause ;) {
while (buf [j] ≡ ’ ’) j++; /∗ scan to nonblank ∗/
if (buf [j] ≡ ’\n’) break;
if (buf [j] < ’ ’ ∨ buf [j] > ’~’) {
fprintf (stderr , "Illegal character (code #"O"x) in the clause on line "O"lld!\n",

buf [j], clauses);
exit (−5);

}
if (buf [j] ≡ ’~’) i = 1, j++;
else i = 0;
〈Scan and record a variable; negate it if i ≡ 1 12 〉;

}
if (k ≡ 0 ∧ ¬non clause) {
fprintf (stderr , "(Empty line "O"lld is being ignored)\n", clauses);
nullclauses ++; /∗ strictly speaking it would be unsatisfiable ∗/

}
if (non clause) 〈Remove all variables of the current clause 19 〉;
cells += k;

This code is used in sections 9 and 10.

§12 SAT10 THE I/O WRAPPER 9

12. We need a hack to insert the bit codes 1 and/or 2 into a pointer value.

#define hack in (q, t) (tmp var ∗)(t | (ullng) q)

〈Scan and record a variable; negate it if i ≡ 1 12 〉 ≡
{
register tmp var ∗p;

if (cur tmp var ≡ bad tmp var) 〈 Install a new vchunk 13 〉;
〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 16 〉;
if (¬non clause) {
〈Find cur tmp var~name in the hash table at p 17 〉;
if (clauses ∧ (p~stamp ≡ clauses ∨ p~stamp ≡ −clauses)) 〈Handle a duplicate literal 18 〉
else {
p~stamp = (i ? −clauses : clauses);
if (cur cell ≡ bad cell) 〈 Install a new chunk 14 〉;
∗cur cell = p;
if (i ≡ 1) ∗cur cell = hack in (∗cur cell , 1);
if (k ≡ 0) ∗cur cell = hack in (∗cur cell , 2);
cur cell ++, k++;

}
}

}

This code is used in section 11.

13. 〈 Install a new vchunk 13 〉 ≡
{
register vchunk ∗new vchunk ;

new vchunk = (vchunk ∗) malloc (sizeof (vchunk));
if (¬new vchunk) {
fprintf (stderr , "Can’t allocate a new vchunk!\n");
exit (−6);

}
new vchunk~prev = cur vchunk , cur vchunk = new vchunk ;
cur tmp var = &new vchunk~var [0];
bad tmp var = &new vchunk~var [vars per vchunk];

}

This code is used in section 12.

14. 〈 Install a new chunk 14 〉 ≡
{
register chunk ∗new chunk ;

new chunk = (chunk ∗) malloc (sizeof (chunk));
if (¬new chunk) {
fprintf (stderr , "Can’t allocate a new chunk!\n");
exit (−7);

}
new chunk~prev = cur chunk , cur chunk = new chunk ;
cur cell = &new chunk~cell [0];
bad cell = &new chunk~cell [cells per chunk];

}

This code is used in section 12.

10 THE I/O WRAPPER SAT10 §15

15. The hash code is computed via “universal hashing,” using the following precomputed tables of random
bits.

〈 Initialize everything 8 〉 +≡
for (j = 92; j; j−−)
for (k = 0; k < 8; k++) hash bits [j][k] = gb next rand ();

16. 〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 16 〉 ≡
cur tmp var~name .lng = 0;
for (h = l = 0; buf [j + l] > ’ ’ ∧ buf [j + l] ≤ ’~’; l++) {
if (l > 7) {
fprintf (stderr , "Variable name "O".9s... in the clause on line "O"lld is too long!\n",

buf + j, clauses);
exit (−8);

}
h ⊕= hash bits [buf [j + l]− ’!’][l];
cur tmp var~name .ch8 [l] = buf [j + l];

}
if (l ≡ 0) non clause = 1; /∗ ‘~’ by itself is like ‘true’ ∗/
else j += l, h &= (1 ≪ hbits)− 1;

This code is used in section 12.

17. 〈Find cur tmp var~name in the hash table at p 17 〉 ≡
for (p = hash [h]; p; p = p~next)
if (p~name .lng ≡ cur tmp var~name .lng) break;

if (¬p) { /∗ new variable found ∗/
p = cur tmp var ++;
p~next = hash [h], hash [h] = p;
p~serial = vars ++;
p~stamp = 0;

}

This code is used in section 12.

18. The most interesting aspect of the input phase is probably the “unwinding” that we might need to do
when encountering a literal more than once in the same clause.

〈Handle a duplicate literal 18 〉 ≡
{
if ((p~stamp > 0) ≡ (i > 0)) non clause = 1; /∗ tautology ∗/

}

This code is used in section 12.

§19 SAT10 THE I/O WRAPPER 11

19. An input line that begins with ‘~ ’ is silently treated as a comment. Otherwise redundant clauses are
logged, in case they were unintentional. (One can, however, intentionally use redundant clauses to force the
order of the variables.)

〈Remove all variables of the current clause 19 〉 ≡
{
while (k) {
〈Move cur cell backward to the previous cell 20 〉;
k−−;

}
if (non clause ∧ ((buf [0] 6= ’~’) ∨ (buf [1] 6= ’ ’)))
fprintf (stderr , "(The clause on line "O"lld is always satisfied)\n", clauses);

nullclauses ++;
}

This code is used in sections 10 and 11.

20. 〈Move cur cell backward to the previous cell 20 〉 ≡
if (cur cell > &cur chunk~cell [0]) cur cell −−;
else {
register chunk ∗old chunk = cur chunk ;

cur chunk = old chunk~prev ; free (old chunk);
bad cell = &cur chunk~cell [cells per chunk];
cur cell = bad cell − 1;

}

This code is used in sections 19 and 36.

21. 〈Move cur tmp var backward to the previous temporary variable 21 〉 ≡
if (cur tmp var > &cur vchunk~var [0]) cur tmp var −−;
else {
register vchunk ∗old vchunk = cur vchunk ;

cur vchunk = old vchunk~prev ; free (old vchunk);
bad tmp var = &cur vchunk~var [vars per vchunk];
cur tmp var = bad tmp var − 1;

}

This code is used in section 37.

22. 〈Report the successful completion of the input phase 22 〉 ≡
fprintf (stderr , "("O"lld variables, "O"lld clauses, "O"llu literals successfully read)\n",

vars , clauses , cells);

This code is used in section 2.

12 SAT SOLVING, VERSION 10 SAT10 §23

23. SAT solving, version 10. Okay, now comes my hypothetical recreation of the Brown–Purdom SAT
solver. (It’s unfortunate that no copy of their original program survives.)
The algorithm below essentially solves a satisfiability problem by backtracking. At each level it tries

two possibilities for some unset variable, unless it finds an unset variable for which there’s only one viable
possibility based on previously set variables (thus making a forced move), or unless it finds an unset variable
with no viable possibilities (in which case it backs up to the previous level of branching).
The key idea is that the first literal in every clause is considered to be “watched,” and the watched literal

has not been set false. If the algorithm does want to make that literal false, it must first swap another literal
of the clause into the first position.
This method can be implemented with extremely simple data structures:

• For each clause c, there’s a sequential list of the literals in c.
• For each variable v, there are linked lists of the clauses that are watching v and v̄.
• Each variable is either set to true, set to false, or unknown.
• There’s a circular list containing all the unset variables whose literals are watched by at least one clause.
(This list is called the active ring; we’re done when it becomes empty at decision time.)

And of course we remember the current trail of decisions made at each level of the implicit backtrack tree.

24. Each link is a 32-bit integer. (I don’t use C pointers in the main data structures, because they occupy
64 bits and clutter up the caches.) Links in the watch lists are indexes of clauses; links in the active ring are
indexes of variables. A zero link indicates the end of a list.
The literals within a clause, called “cells,” are 32-bit unsigned integers kept in a big array called mem .

Variable number k, for 1 ≤ k ≤ vars, corresponds to the literals numbered 2k and 2k + 1.
Each clause is represented by a pointer to its first cell and by a link to the successor clause (if any) with

the same watched literal.

〈Type definitions 5 〉 +≡
typedef struct {
uint start ; /∗ the address in mem where the cells for this clause start ∗/
uint wlink ; /∗ link to another clause in the same watch list ∗/

} clause;

25. Several items are stored for each variable: The heads of its two watch lists; the link to the next active
variable; a spare field for miscellaneous use; and the 8-byte symbolic name.
(We also keep the current values of variables in a separate array val , with one byte for each variable.)

#define false 0 /∗ val code for a false literal ∗/
#define true 1 /∗ val code for a true literal ∗/
#define unknown −1 /∗ val code for an unset literal ∗/

〈Type definitions 5 〉 +≡
typedef struct {
uint wlist0 , wlist1 ; /∗ heads of the watch lists ∗/
int next ; /∗ next item in the ring of active variables ∗/
uint spare ; /∗ extra field used only by sanity at the moment ∗/
octa name ; /∗ the variable’s symbolic name ∗/

} variable;

26. The backtracking process maintains a sequential stack of state information.

〈Type definitions 5 〉 +≡
typedef struct {
int var ; /∗ variable whose value is being set ∗/
int move ; /∗ code for what we’re setting it ∗/

} state;

§27 SAT10 SAT SOLVING, VERSION 10 13

27. 〈Global variables 3 〉 +≡
uint ∗mem ; /∗ the master array of cells ∗/
clause ∗cmem ; /∗ the master array of clauses ∗/
variable ∗vmem ; /∗ the master array of variables ∗/
char ∗val ; /∗ the master array of variable values ∗/
state ∗smem ; /∗ the stack of choices made so far ∗/
uint active ; /∗ an item in the active ring, or zero if that ring is empty ∗/

28. Here is a subroutine that prints a clause symbolically. It illustrates some of the conventions of the
data structures that have been explained above. I use it only for debugging.
Incidentally, the clause numbers reported to the user after the input phase may differ from the line numbers

reported during the input phase, when nullclauses > 0.

〈Subroutines 28 〉 ≡
void print clause (int c)
{
register uint k, l;

printf (""O"d:", c); /∗ show the clause number ∗/
for (k = cmem [c].start ; k < cmem [c− 1].start ; k++) {
l = mem [k];
printf (" "O"s"O".8s", l& 1 ? "~" : "", vmem [l ≫ 1].name .ch8); /∗ kth literal ∗/

}
printf ("\n");

}

See also sections 29, 30, 31, and 32.

This code is used in section 2.

29. Similarly we can print out all of the clauses that currently watch a particular literal.

〈Subroutines 28 〉 +≡
void print watches for (int l)
{
register int c;

if (l & 1) c = vmem [l ≫ 1].wlist1 ;
else c = vmem [l ≫ 1].wlist0 ;
for (; c; c = cmem [c].wlink) print clause (c);

}

30. 〈Subroutines 28 〉 +≡
void print ring (void)
{
register int p;

printf ("Ring:");
if (active) {
for (p = vmem [active].next ; ; p = vmem [p].next) {
printf (" "O".8s", vmem [p].name .ch8);
if (p ≡ active) break;

}
}
printf ("\n");

}

14 SAT SOLVING, VERSION 10 SAT10 §31

31. Speaking of debugging, here’s a routine to check if the redundant parts of our data structure have gone
awry.

#define sanity checking 0 /∗ set this to 1 if you suspect a bug ∗/

〈Subroutines 28 〉 +≡
void sanity (void)
{
register int k, l, c, v;

if (active) {
for (v = vmem [active].next ; ; v = vmem [v].next) {
vmem [v].spare = 1; /∗ all spare fields assumed zero otherwise ∗/
if (v ≡ active) break;

}
}
k = 0;
for (v = 1; v ≤ vars ; v++) {
for (c = vmem [v].wlist0 ; c; c = cmem [c].wlink) {
k++;
if (mem [cmem [c].start] 6= v + v)
fprintf (stderr , "Clause "O"d watches "O"u, not "O"u!\n", c,mem [cmem [c].start], v + v);

else if (val [v] ≡ false)
fprintf (stderr , "Clause "O"d watches the false literal "O"u!\n", c, (v + v));

}
for (c = vmem [v].wlist1 ; c; c = cmem [c].wlink) {
k++;
if (mem [cmem [c].start] 6= v + v + 1)
fprintf (stderr , "Clause "O"d watches "O"u, not "O"u!\n", c,mem [cmem [c].start], v+v+1);

else if (val [v] ≡ true)
fprintf (stderr , "Clause "O"d watches the false literal "O"u!\n", c, (v + v + 1));

}
if (vmem [v].spare ≡ 0 ∧ val [v] ≡ unknown ∧ (vmem [v].wlist0 ∨ vmem [v].wlist1))
fprintf (stderr , "Variable "O".8s should be in the active ring!\n", vmem [v].name .ch8);

if (vmem [v].spare ≡ 1 ∧ (val [v] 6= unknown ∨ ((vmem [v].wlist0 | vmem [v].wlist1) ≡ 0)))
fprintf (stderr , "Variable "O".8s should not be in the active ring!\n",

vmem [v].name .ch8);
vmem [v].spare = 0;

}
if (k 6= clauses)
fprintf (stderr , "Oops: "O"d of "O"lld clauses are being watched!\n", k, clauses);

}

32. In long runs it’s helpful to know how far we’ve gotten.

〈Subroutines 28 〉 +≡
void print state (int l)
{
register int k;

fprintf (stderr , " after "O"lld mems:",mems);
for (k = 1; k ≤ l; k++) fprintf (stderr , ""O"c", smem [k].move + ’0’);
fprintf (stderr , "\n");
fflush (stderr);

}

§33 SAT10 INITIALIZING THE REAL DATA STRUCTURES 15

33. Initializing the real data structures. We’re ready now to convert the temporary chunks of data
into the form we want, and to recycle those chunks. The code below is, of course, similar to what has worked
in previous programs of this series.

〈Set up the main data structures 33 〉 ≡
〈Allocate the main arrays 34 〉;
〈Copy all the temporary cells to the mem and cmem arrays in proper format 35 〉;
〈Copy all the temporary variable nodes to the vmem array in proper format 37 〉;
〈Check consistency 38 〉;
if (out file) 〈Copy all the clauses to out file 39 〉;

This code is used in section 2.

34. 〈Allocate the main arrays 34 〉 ≡
free (buf); free (hash); /∗ a tiny gesture to make a little room ∗/
mem = (uint ∗) malloc (cells ∗ sizeof (uint));
if (¬mem) {
fprintf (stderr , "Oops, I can’t allocate the big mem array!\n");
exit (−10);

}
bytes = cells ∗ sizeof (uint);
cmem = (clause ∗) malloc ((clauses + 1) ∗ sizeof (clause));
if (¬cmem) {
fprintf (stderr , "Oops, I can’t allocate the cmem array!\n");
exit (−11);

}
bytes += (clauses + 1) ∗ sizeof (clause);
vmem = (variable ∗) malloc ((vars + 1) ∗ sizeof (variable));
if (¬vmem) {
fprintf (stderr , "Oops, I can’t allocate the vmem array!\n");
exit (−12);

}
bytes += (vars + 1) ∗ sizeof (variable);
smem = (state ∗) malloc ((vars + 1) ∗ sizeof (state));
if (¬smem) {
fprintf (stderr , "Oops, I can’t allocate the smem array!\n");
exit (−13);

}
bytes += (vars + 1) ∗ sizeof (state);
val = (char ∗) malloc ((vars + 1) ∗ sizeof (char));
if (¬val) {
fprintf (stderr , "Oops, I can’t allocate the val array!\n");
exit (−14);

}
bytes += (vars + 1) ∗ sizeof (char);

This code is used in section 33.

16 INITIALIZING THE REAL DATA STRUCTURES SAT10 §35

35. 〈Copy all the temporary cells to the mem and cmem arrays in proper format 35 〉 ≡
for (j = 1; j ≤ vars ; j++) {
o, vmem [j].wlist0 = vmem [j].wlist1 = 0;
o, val [j] = unknown ;

}
for (c = clauses , j = 0; c; c−−) {
o, cmem [c].start = k = j;
〈 Insert the cells for the literals of clause c 36 〉;
l = mem [k];
if (l & 1) ooo , p = vmem [l ≫ 1].wlist1 , cmem [c].wlink = p, vmem [l ≫ 1].wlist1 = c;
else ooo , p = vmem [l ≫ 1].wlist0 , cmem [c].wlink = p, vmem [l ≫ 1].wlist0 = c;

}
if (j 6= cells) {
fprintf (stderr , "Oh oh, something happened to "O"d cells!\n", (int) cells − j);
exit (−15);

}
o, cmem [c].start = j;

This code is used in section 33.

36. The basic idea is to “unwind” the steps that we went through while building up the chunks.

#define hack out (q) (((ullng) q) & #3)
#define hack clean (q) ((tmp var ∗)((ullng) q &−4))

〈 Insert the cells for the literals of clause c 36 〉 ≡
for (i = 0; i < 2;) {
〈Move cur cell backward to the previous cell 20 〉;
i = hack out (∗cur cell);
p = hack clean (∗cur cell)~serial ;
p += p+ (i & 1) + 2;
o,mem [j++] = p;

}

This code is used in section 35.

37. 〈Copy all the temporary variable nodes to the vmem array in proper format 37 〉 ≡
for (c = vars ; c; c−−) {
〈Move cur tmp var backward to the previous temporary variable 21 〉;
o, vmem [c].name .lng = cur tmp var~name .lng ;

}

This code is used in section 33.

38. We should now have unwound all the temporary data chunks back to their beginnings.

〈Check consistency 38 〉 ≡
if (cur cell 6= &cur chunk~cell [0] ∨ cur chunk~prev 6= Λ ∨ cur tmp var 6=

&cur vchunk~var [0] ∨ cur vchunk~prev 6= Λ) {
fprintf (stderr , "This can’t happen (consistency check failure)!\n");
exit (−14);

}
free (cur chunk); free (cur vchunk);

This code is used in section 33.

§39 SAT10 INITIALIZING THE REAL DATA STRUCTURES 17

39. 〈Copy all the clauses to out file 39 〉 ≡
{
for (k = 0, c = clauses ; c; c−−) {
for (; k < cmem [c− 1].start ; k++) {
l = mem [k];
fprintf (out file , " "O"s"O".8s", l& 1 ? "~" : "", vmem [l ≫ 1].name .ch8); /∗ kth literal ∗/

}
fprintf (out file , "\n");

}
fflush (out file); /∗ complete the copy of input clauses ∗/

}

This code is used in section 33.

18 DOING IT SAT10 §40

40. Doing it. Now comes ye olde basic backtrack, but simplified because updates to the watch lists
don’t have to be undone.
At level l of the backtrack process we record the variable, smem [l].var , whose value is being specified, and

its chosen value, smem [l].move . The latter value is 0 or 1 if we’re making a binary branch and we’re trying
first to make the variable true or false, respectively; it is 3 or 2 if that move failed and we’re trying the other
alternative. It is 4 or 5 if the move was forced and the variable had to be set respectively to true or false.

〈Solve the problem 40 〉 ≡
o, level = 0, smem [0].move = 0;
〈 Initialize the active ring 41 〉;

choose : if (sanity checking) sanity ();
if (delta ∧ (mems ≥ thresh)) thresh += delta , print state (level);
if (mems > timeout) {
fprintf (stderr , "TIMEOUT!\n");
goto done ;

}
〈Decide what to do next, going either to branch or forcedmove or backup or satisfied 42 〉;

branch : o, nextmove = (vmem [v].wlist0 ≡ 0 ∨ vmem [v].wlist1 6= 0);
nodes ++;

forcedmove : level ++; /∗ at this point vmem [active].next = v is the branch variable ∗/
o, smem [level].var = v, smem [level].move = nextmove ;
if (active ≡ v) active = 0; /∗ the ring becomes empty ∗/
else oo , h = vmem [v].next , vmem [active].next = h; /∗ delete v from the ring ∗/

makemove : 〈Set v and update the watch lists for its new value 45 〉;
goto choose ;

backup : 〈Backtrack to the most recent unforced move 48 〉;

This code is used in section 2.

41. 〈 Initialize the active ring 41 〉 ≡
for (active = j = 0, k = vars ; k; k−−)
if ((o, vmem [k].wlist0) ∨ (vmem [k].wlist1)) {
if (active ≡ 0) active = k;
o, vmem [k].next = j, j = k;

}
if (active) o, vmem [active].next = j; /∗ complete the circle ∗/

This code is used in section 40.

§42 SAT10 DOING IT 19

42. The basic operation we need to do at each level is to decide which variable in the active ring should
be set next. And experience with SAT problems shows that, once we get going, there’s usually at least one
unset variable whose value is forced by previous clauses.
A literal is forced to be true if and only if there’s a clause in its watch list such that all other literals of

that clause are already set to false. Therefore we go through the watch list of every active variable until we
either find such a literal or discover that there is no forcing at the present time.
When a forced literal is found, we’ll want to resume searching for another one at the same place where

we left off, thus going cyclically through the active ring. (For if we were to start searching again at the
beginning of that list, we’d be covering more or less the same ground as before.)

〈Decide what to do next, going either to branch or forcedmove or backup or satisfied 42 〉 ≡
if (active ≡ 0) goto satisfied ;
if (verbose & show details) {
fprintf (stderr , " active ring:");
for (v = vmem [active].next ; ; v = vmem [v].next) {
fprintf (stderr , " "O".8s", vmem [v].name .ch8);
if (v ≡ active) break;

}
fprintf (stderr , "\n");

}
vv = active , vvv = 0;

newv : o, v = vmem [vv].next ; /∗ during the search, v is one step ahead of vv ∗/
force = 0;
〈Set force = 1 if variable v must be true 43 〉;
〈Set force += 2 if variable v must be false 44 〉;
if (force ≡ 3) goto backup ;
if (force) {
nextmove = force + 3;
active = vv ;
goto forcedmove ;

}
if (vvv ≡ 0 ∧ v ≤ primary vars) vvv = vv ; /∗ vvv precedes the first active primary variable ∗/
if (v ≡ active) {
if (vvv) vv = active = vvv ;
v = vmem [active].next ;
goto branch ;

}
vv = v; goto newv ;

This code is used in section 40.

20 DOING IT SAT10 §43

43. When literal l is watched in clause c, we know that l is the first literal of c. We scan through the
other literals until either reaching a literal that’s currently unknown or true (whence nothing is forced), or
reaching the end (whence l is forced).
If we encounter a true literal l′, we could swap it into first position, thereby moving clause c from the

watch list of l to the watch list of l′, where it probably won’t need to be examined as often. But that’s a
complication that I will postpone for future study, to be explored in variants of this program.

〈Set force = 1 if variable v must be true 43 〉 ≡
for (o, c = vmem [v].wlist0 ; c; o, c = cmem [c].wlink) {
for (oo , k = cmem [c].start + 1; k < cmem [c− 1].start ; k++)
if (oo , val [mem [k] ≫ 1] 6= (mem [k] & 1)) goto unforced0 ;

if (verbose & show details)
fprintf (stderr , "(Clause "O"d reduced to "O".8s)\n", c, vmem [v].name .ch8);

force = 1;
goto forced0 ;

unforced0 : continue;
}
forced0 :

This code is used in section 42.

44. 〈Set force += 2 if variable v must be false 44 〉 ≡
for (o, c = vmem [v].wlist1 ; c; o, c = cmem [c].wlink) {
for (oo , k = cmem [c].start + 1; k < cmem [c− 1].start ; k++)
if (oo , val [mem [k] ≫ 1] 6= (mem [k] & 1)) goto unforced1 ;

if (verbose & show details)
fprintf (stderr , "(Clause "O"d reduced to ~"O".8s)\n", c, vmem [v].name .ch8);

force += 2;
goto forced1 ;

unforced1 : continue;
}
forced1 :

This code is used in section 42.

§45 SAT10 DOING IT 21

45. 〈Set v and update the watch lists for its new value 45 〉 ≡
if ((verbose & show choices) ∧ level ≤ show choices max) {
fprintf (stderr , "Level "O"d, ", level);
switch (nextmove) {
case 0: fprintf (stderr , "trying "O".8s", vmem [v].name .ch8); break;
case 1: fprintf (stderr , "trying ~"O".8s", vmem [v].name .ch8); break;
case 2: fprintf (stderr , "retrying "O".8s", vmem [v].name .ch8); break;
case 3: fprintf (stderr , "retrying ~"O".8s", vmem [v].name .ch8); break;
case 4: fprintf (stderr , "forcing "O".8s", vmem [v].name .ch8); break;
case 5: fprintf (stderr , "forcing ~"O".8s", vmem [v].name .ch8); break;
}
fprintf (stderr , ", "O"lld mems\n",mems);

}
if (nextmove & 1) {
o, val [v] = false ;
oo , c = vmem [v].wlist0 , vmem [v].wlist0 = 0, ll = v + v;

} else {
o, val [v] = true ;
oo , c = vmem [v].wlist1 , vmem [v].wlist1 = 0, ll = v + v + 1;

}
〈Clear the watch list for ll that starts at c 46 〉;

This code is used in section 40.

46. 〈Clear the watch list for ll that starts at c 46 〉 ≡
for (; c; c = cc) {
o, cc = cmem [c].wlink ;
for (oo , j = cmem [c].start , k = j + 1; k < cmem [c− 1].start ; k++) {
o, l = mem [k];
if (o, val [l ≫ 1] 6= (l & 1)) break;

}
if (k ≡ cmem [c− 1].start) {
fprintf (stderr , "Clause "O"d can’t be watched!\n", c); /∗ “can’t happen” ∗/
exit (−18);

}
oo ,mem [k] = ll ,mem [j] = l;
〈Put c into the watch list of l 47 〉;

}

This code is used in section 45.

22 DOING IT SAT10 §47

47. The variable corresponding to l might become active at this point, because it might not be watched
anywhere else. In such a case we insert it at the “beginning” of the active ring (that is, just after active).
We always have vmem [active].next = h at this point, unless active = 0.

〈Put c into the watch list of l 47 〉 ≡
if (verbose & show details) fprintf (stderr , "(Clause "O"d now watches "O"s"O".8s)\n", c,

l & 1 ? "~" : "", vmem [l ≫ 1].name .ch8);
o, p = vmem [l ≫ 1].wlist0 , q = vmem [l ≫ 1].wlist1 ;
if (val [l ≫ 1] ≡ unknown ∧ p ≡ 0 ∧ q ≡ 0) {
if (active ≡ 0) o, active = h = l ≫ 1, vmem [active].next = h;
else oo , vmem [l ≫ 1].next = h, h = l ≫ 1, vmem [active].next = h;

}
if (l & 1) oo , cmem [c].wlink = q, vmem [l ≫ 1].wlist1 = c;
else oo , cmem [c].wlink = p, vmem [l ≫ 1].wlist0 = c;

This code is used in section 46.

48. If variables need to be reactivated here, we put them just before the place where a conflict was found.

〈Backtrack to the most recent unforced move 48 〉 ≡
active = vv , h = v;
while (o, smem [level].move ≥ 2) {
v = smem [level].var ;
o, val [v] = unknown ;
if ((o, vmem [v].wlist0 6= 0) ∨ (vmem [v].wlist1 6= 0))
oo , vmem [v].next = h, h = v, vmem [active].next = h;

level −−;
}
if (level) {
nextmove = 3− smem [level].move ;
oo , v = smem [level].var , smem [level].move = nextmove ;
goto makemove ;

}
if (1) {
printf ("~\n"); /∗ the formula was unsatisfiable ∗/
if (verbose & show basics) fprintf (stderr , "UNSAT\n");

} else {
satisfied : if (verbose & show basics) fprintf (stderr , "!SAT!\n");
〈Print the solution found 49 〉;

}

This code is used in section 40.

§49 SAT10 DOING IT 23

49. 〈Print the solution found 49 〉 ≡
for (k = 1; k ≤ level ; k++) {
l = (smem [k].var ≪ 1) + (smem [k].move & 1);
printf (" "O"s"O".8s", l& 1 ? "~" : "", vmem [l ≫ 1].name .ch8);
if (out file) fprintf (out file , " "O"s"O".8s", l& 1 ? "" : "~", vmem [l ≫ 1].name .ch8);

}
printf ("\n");
if (level < vars) {
if (verbose & show unused vars) printf ("(Unused:");
for (v = 1; v ≤ vars ; v++)
if (val [v] ≡ unknown) {
if (verbose & show unused vars) printf (" "O".8s", vmem [v].name .ch8);
if (out file) fprintf (out file , " "O".8s", vmem [v].name .ch8);

}
if (verbose & show unused vars) printf (")\n");

}
if (out file) fprintf (out file , "\n");

This code is used in section 48.

24 INDEX SAT10 §50

50. Index.

active : 27, 30, 31, 40, 41, 42, 47, 48.
argc : 2, 4.
argv : 2, 4.
backup : 40, 42.
bad cell : 7, 12, 14, 20.
bad tmp var : 7, 12, 13, 21.
branch : 40, 42.
buf : 7, 8, 9, 10, 11, 16, 19, 34.
buf size : 3, 4, 8, 9, 10.
bytes : 2, 3, 34.
c: 2, 28, 29, 31.
cc : 2, 46.
cell : 6, 14, 20, 38.
cells : 7, 9, 10, 11, 22, 34, 35.
cells per chunk : 6, 14, 20.
choose : 40.
chunk: 6, 7, 14, 20.
chunk struct: 6.
ch8 : 5, 16, 28, 30, 31, 39, 42, 43, 44, 45, 47, 49.
clause: 24, 27, 34.
clauses : 7, 9, 10, 11, 12, 16, 19, 22, 31, 34, 35, 39.
cmem : 27, 28, 29, 31, 34, 35, 39, 43, 44, 46, 47.
cur cell : 7, 12, 14, 20, 36, 38.
cur chunk : 7, 14, 20, 38.
cur tmp var : 7, 12, 13, 16, 17, 21, 37, 38.
cur vchunk : 7, 13, 21, 38.
delta : 3, 4, 40.
done : 2, 40.
eps : 3, 4.
exit : 4, 8, 9, 10, 11, 13, 14, 16, 34, 35, 38, 46.
false : 25, 31, 45.
fflush : 32, 39.
fgets : 9, 10.
fopen : 4.
force : 2, 42, 43, 44.
forcedmove : 40, 42.
forced0 : 43.
forced1 : 44.
fprintf : 2, 4, 8, 9, 10, 11, 13, 14, 16, 19, 22, 31, 32,

34, 35, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 49.
free : 20, 21, 34, 38.
gb init rand : 8.
gb next rand : 15.
gb rand : 3.
h: 2.
hack clean : 36.
hack in : 12.
hack out : 36.
hash : 7, 8, 17, 34.
hash bits : 7, 15, 16.
hbits : 3, 4, 8, 9, 16.

i: 2.
imems : 2, 3.
j: 2.
k: 2, 28, 31, 32.
kk : 2.
l: 2, 28, 29, 31, 32.
level : 2, 40, 45, 48, 49.
ll : 2, 45, 46.
lng : 5, 16, 17, 37.
main : 2.
makemove : 40, 48.
malloc : 8, 13, 14, 34.
mem : 24, 27, 28, 31, 34, 35, 36, 39, 43, 44, 46.
mems : 2, 3, 4, 32, 40, 45.
move : 26, 32, 40, 48, 49.
name : 5, 16, 17, 25, 28, 30, 31, 37, 39, 42, 43,

44, 45, 47, 49.
new chunk : 14.
new vchunk : 13.
newv : 42.
next : 5, 17, 25, 30, 31, 40, 41, 42, 47, 48.
nextmove : 2, 40, 42, 45, 48.
nodes : 2, 3, 40.
non clause : 7, 11, 12, 16, 18, 19.
nullclauses : 7, 9, 10, 11, 19, 28.
O: 2.
o: 2.
octa: 5, 25.
old chunk : 20.
old vchunk : 21.
oo : 2, 40, 43, 44, 45, 46, 47, 48.
ooo : 2, 35.
out file : 3, 4, 33, 39, 49.
out name : 3, 4.
p: 2, 12, 30.
pp : 2.
prev : 5, 6, 13, 14, 20, 21, 38.
primary file : 3, 4, 9, 10.
primary name : 3, 4, 10.
primary vars : 3, 9, 10, 42.
print clause : 28, 29.
print ring : 30.
print state : 32, 40.
print watches for : 29.
printf : 28, 30, 48, 49.
q: 2.
qq : 2.
r: 2.
random seed : 3, 4, 8.
sanity : 25, 31, 40.
sanity checking : 31, 40.

§50 SAT10 INDEX 25

satisfied : 42, 48.
serial : 5, 17, 36.
show basics : 2, 3, 10, 48.
show choices : 3, 45.
show choices max : 3, 4, 45.
show details : 3, 42, 43, 44, 47.
show unused vars : 3, 49.
smem : 27, 32, 34, 40, 48, 49.
spare : 25, 31.
sscanf : 4.
stamp : 5, 12, 17, 18.
start : 24, 28, 31, 35, 39, 43, 44, 46.
state: 26, 27, 34.
stderr : 2, 4, 8, 9, 10, 11, 13, 14, 16, 19, 22, 31, 32,

34, 35, 38, 40, 42, 43, 44, 45, 46, 47, 48.
stdin : 1, 7, 9.
strlen : 9, 10.
thresh : 3, 4, 40.
timeout : 3, 4, 40.
tmp var: 5, 6, 7, 8, 12, 36.
tmp var struct: 5.
true : 25, 31, 45.
uint: 2, 5, 7, 24, 25, 27, 28, 34.
ullng: 2, 3, 7, 12, 36.
unforced0 : 43.
unforced1 : 44.
unknown : 25, 31, 35, 47, 48, 49.
u2 : 5.
v: 2, 31.
val : 25, 27, 31, 34, 35, 43, 44, 45, 46, 47, 48, 49.
var : 5, 13, 21, 26, 38, 40, 48, 49.
variable: 25, 27, 34.
vars : 7, 9, 10, 17, 22, 31, 34, 35, 37, 41, 49.
vars per vchunk : 5, 13, 21.
vchunk: 5, 7, 13, 21.
vchunk struct: 5.
verbose : 2, 3, 4, 10, 42, 43, 44, 45, 47, 48, 49.
vmem : 27, 28, 29, 30, 31, 34, 35, 37, 39, 40, 41,

42, 43, 44, 45, 47, 48, 49.
vv : 2, 42, 48.
vvv : 2, 42.
v0 : 2.
wlink : 24, 29, 31, 35, 43, 44, 46, 47.
wlist0 : 25, 29, 31, 35, 40, 41, 43, 45, 47, 48.
wlist1 : 25, 29, 31, 35, 40, 41, 44, 45, 47, 48.

26 NAMES OF THE SECTIONS SAT10

〈Allocate the main arrays 34 〉 Used in section 33.

〈Backtrack to the most recent unforced move 48 〉 Used in section 40.

〈Check consistency 38 〉 Used in section 33.

〈Clear the watch list for ll that starts at c 46 〉 Used in section 45.

〈Copy all the clauses to out file 39 〉 Used in section 33.

〈Copy all the temporary cells to the mem and cmem arrays in proper format 35 〉 Used in section 33.

〈Copy all the temporary variable nodes to the vmem array in proper format 37 〉 Used in section 33.

〈Decide what to do next, going either to branch or forcedmove or backup or satisfied 42 〉 Used in section 40.

〈Find cur tmp var~name in the hash table at p 17 〉 Used in section 12.

〈Global variables 3, 7, 27 〉 Used in section 2.

〈Handle a duplicate literal 18 〉 Used in section 12.

〈 Initialize everything 8, 15 〉 Used in section 2.

〈 Initialize the active ring 41 〉 Used in section 40.

〈 Input the clause in buf 11 〉 Used in sections 9 and 10.

〈 Input the clauses 9 〉 Used in section 2.

〈 Input the primary variables 10 〉 Used in section 9.

〈 Insert the cells for the literals of clause c 36 〉 Used in section 35.

〈 Install a new chunk 14 〉 Used in section 12.

〈 Install a new vchunk 13 〉 Used in section 12.

〈Move cur cell backward to the previous cell 20 〉 Used in sections 19 and 36.

〈Move cur tmp var backward to the previous temporary variable 21 〉 Used in section 37.

〈Print the solution found 49 〉 Used in section 48.

〈Process the command line 4 〉 Used in section 2.

〈Put the variable name beginning at buf [j] in cur tmp var~name and compute its hash code h 16 〉 Used

in section 12.

〈Put c into the watch list of l 47 〉 Used in section 46.

〈Remove all variables of the current clause 19 〉 Used in sections 10 and 11.

〈Report the successful completion of the input phase 22 〉 Used in section 2.

〈Scan and record a variable; negate it if i ≡ 1 12 〉 Used in section 11.

〈Set up the main data structures 33 〉 Used in section 2.

〈Set force += 2 if variable v must be false 44 〉 Used in section 42.

〈Set force = 1 if variable v must be true 43 〉 Used in section 42.

〈Set v and update the watch lists for its new value 45 〉 Used in section 40.

〈Solve the problem 40 〉 Used in section 2.

〈Subroutines 28, 29, 30, 31, 32 〉 Used in section 2.

〈Type definitions 5, 6, 24, 25, 26 〉 Used in section 2.

SAT10

Section Page
Intro . 1 1
The I/O wrapper . 5 5
SAT solving, version 10 . 23 12
Initializing the real data structures . 33 15
Doing it . 40 18
Index . 50 24

